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ABSTRACT
Certificate systems often provide a foundation for distributed sys-
tem security. A certificate is a signed statement; the user’s pri-
vate key must have been used to create the certificate’s signature
and the resulting certificate is tamper evident. Despite being based
on sound theory, certificate system implementations are often ex-
ploited. Furthermore, certificate systems are often complex, to the
extent that user-space programmers avoid certificates in favor of
less secure, but easier to program, mechanisms.

We describe the certificate system for Ethos, an experimental
Operating System (OS) that has been designed for security from the
ground up. We reexamine and redesign the layering of certificate
creation across kernel and user space, and discuss the beneficial se-
curity properties that result. The design enables certificates to be a
pervasive authentication mechanism, private keys to be protected,
and policy-based restrictions on the statements that a given appli-
cation may sign. These protections are essential to protect digital
identity systems from attack.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—authentica-
tion

General Terms
Design, Security

Keywords
Operating systems, certificates, digital identity, PKI, authentica-
tion, authorization

1. INTRODUCTION
The properties of certificates make them very useful for solving

identity problems in distributed systems. Certificates are digitally
signed statements [18], enabling very precise statements to be made
by the signatory. It is reasonable to rely on such a signed statement
only if it is highly probable that the apparent signer really signed it.
And this, it turns out, is a subtle problem.
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Figure 1: User-application-gatekeeper-keymaster model

Certificates are based on sound theory [27], but attackers often
exploit flaws in their implementations. At issue are the many differ-
ent software and hardware components involved in creating signa-
tures. Each of these components introduces vulnerabilities. A se-
curity architecture should be structured to minimize the number of
components which could be subverted and to reduce an attacker’s
ability to subvert each component. We shall describe a security ar-
chitecture which does this, but before doing so we must introduce
some terminology.

Figure 1 illustrates the actors involved in creating a certificate.
A user is a human who explicitly or implicitly directs a system to
use a private key to sign a certificate. In our model, there are three
software components: an application is a program that prepares a
certificate for signature; a gatekeeper asks for user approval and
then requests a digital signature for a prepared certificate; and a
keymaster has access to a private key and can use it to sign certifi-
cates. Unlike hand-written signatures, a digital signature cannot be
realistically produced by a human; therefore, a keymaster must act
on his behalf. To sign a certificate (a) an application generates an
unsigned certificate and provides it to its gatekeeper (b) the gate-
keeper requests approval from the user and (c) the gatekeeper re-
quests that the keymaster sign the unsigned certificate and provides
the result back to the application. The actors—users, applications,
gatekeepers, and keymasters—all interact within the confines of a
system security policy.

At first glance, it may seem that there are too many actors. Al-
though some architectures may map multiple actors to a single soft-
ware component, we chose to separate into three software actors
because (1) a gatekeeper’s size and privileges should be reduced to
minimize its attack surface, and thus to prevent the keymaster from
signing certificates against the security policy; (2) the keymaster
needs to be a carefully crafted component, it is of paramount im-
portance to prevent private key leakage; and (3) the application can
then be unprivileged. We believe that this model best maps to the
natural isolation and authorization layers within an operating sys-
tem.



A primary goal of an identity system is that the signature scheme
is unforgeable, meaning only user U can create U’s signature on
message m, and universally verifiable, meaning any user can ver-
ify that the signature on m is valid [2]. Together, these provide the
property of non-repudiation of origin [40] that is the cornerstone
of many distributed authentication systems1. If a keymaster prop-
erly isolates a sufficiently long cryptographic key and uses it with
an appropriate cryptographic algorithm, then it is known that the
keymaster signed a given message. In our model, a system must
extend this property of non-repudiation back through a gatekeeper
to the user that authorized the message.

Collectively, a keymaster, gatekeeper, and user that produces a
certificate is the signer. The relying party verifies and possibly
acts on a certificate.

We believe that many of the flaws in existing certificate systems
are due to insufficient security analysis and an improper layering of
the systems’ application, gatekeeper, and keymaster components. It
is difficult to design a certificate system and previous attempts have
failed because they are unable to:

1. ensure that keymasters adequately protect private cryptographic
keys (§2.1)

2. guarantee that the user is signing what he thinks he is signing
(§2.2)

3. guarantee that the signer and relying party share a single
meaning for a given certificate (§2.3)

4. restrict the certificates for which a given gatekeeper may re-
quest signatures (§2.4)

External smart cards are often used to address (1). Sometimes,
smart cards provide a trusted input and output channel; this can
help address (2), although this may significantly increase produc-
tion cost.

This paper describes the design and implementation of certifi-
cates in Ethos, an experimental OS that has been designed for se-
curity from the ground up. Ethos is a clean-slate design, enabling
its software layering to be engineered to meet security requirements
at the most appropriate system level. We have leveraged this advan-
tage to address all of the above listed shortfalls.

Ethos provides the following contributions:

• Stronger isolation properties, made possible by a sign system
call that allows the keymaster component to be fully imple-
mented in the OS kernel

• A type system that allows the system to bind certificates to a
fixed semantic meaning

• An authorization framework that can restrict what a given
gatekeeper may sign; we call this certificate set authoriza-
tion

In the remainder of this paper, we discuss related work (§2), se-
curity requirements (§3), the design of certificates in Ethos (§4),
and an evaluation of Ethos’ implementation (§5).

1 We use non-repudiation as a technical, rather than a legal, term.

2. RELATED WORK

2.1 Isolation
Insufficient isolation has enabled many attacks on certificate sys-

tems including:

Keylogging/PIN collection An attacker collects user input, pos-
sibly including a smart card PIN, after installing malicious
hardware or software. This can result in false authentica-
tion, whereby a malicious program authenticates to a com-
puting resource using a user’s credentials; fraudulent signa-
tures, whereby a program performs a digital signature with-
out a user’s approval; and remote smart card control, whereby
a program makes the smart card’s services available to third
parties over a network [8].

Keyjacking An attacker undermines the notification mechanism
of a certificate system, allowing certificate operations to oc-
cur without notifying the legitimate user [20]. This violates
the requirement that a user’s private key is only used with his
approval.

Many systems have tried to isolate private keys in user-space.
For example, Plan 9’s factotum addresses the leaking of keys through
debugging interfaces, swap space or willing disclosure [7]. The
designers of Plan 9 took care to ensure that the proc filesystem
restricted access to factotum and that the system would avoid swap-
ping factotum to disk. Another example is SSH [39], which provides
an authentication system that is based on public key cryptography.
Like Plan 9, SSH attempts to isolate private keys, it protects them
with an optional password and requires restrictive file permission
settings. But such user-space isolation is often compromised by
malicious software [16] because (1) malicious software runs with
the user’s privileges and (2) passwords are optional or the pass-
word choice is at the user’s discretion. It is especially hard to close
these potential security holes when individual applications imple-
ment disparate protection systems.

Side-channel attacks further threaten proper key isolation [17,
4]. An attacker may analyze the timings or power usage of various
cryptographic operations to learn a private key. Careful implementation—
including introducing random, input-independent delays; ensuring
operations’ inputs do not affect their timing; or using data mask-
ing [21]—can mitigate these attacks. Some algorithms are resistant
to software-based countermeasures without a severe performance
loss.

Cold boot attacks provide another threat to key isolation [11].
These attacks exploit the data retention properties of DRAM to ex-
tract data from a memory chip after rebooting a machine. Zeroing
memory is the most obvious countermeasure for cold boot attacks
([22] mentions limiting the existence of plain-text passwords), but
some keys are necessarily persistent for a system to operate and of-
ten no single program is aware of where in memory all keys reside.

2.2 Seeing what you sign
Since it is not feasible for a person to create a digital signature by

hand, some agent must act on a user’s behalf. Due to this requisite
indirection, it is difficult to guarantee that a user is signing what
he intends [14]. This presents the possibility of a class of attacks
called What You See Is Not What You Sign (WYSINWYS).

The most disadvantaged position for a user to be in is when an
external party both generates and displays the data to be signed. A
point-of-sale system that requests approval from a customer’s smart
card is an example of one such situation. The desirable properties
of a smart card are sometimes at odds with this scenario. In order



to increase their trustworthiness, smart cards are designed to have
very limited functionality, focusing on providing cryptographic op-
erations. A widely deployed smart card must be portable and inex-
pensive, so trusted input and output may be prohibitive. A vendor
could defraud a customer by displaying one value on a point-of-sale
system, but submitting another value to a customer’s smart card for
approval by digital signature. Only one of secure input or output is
necessary for security in such a point-of-sale system [10]. But such
cost-saving single-channel solutions are feasible only in situations
where the statement to be signed is very simple.

Guaranteeing that users sign only what they intended to requires
a trusted path between the display of a certificate and the input with
which a user authorizes a signature. Of course, adding complexity
to this secure path increases the difficulty of its assurance. This
means that it might not be feasible to include the application that
generates the input for signature in the secure path.

An external signing device that photographs a document, per-
forms optical character recognition processing on the image, and
signs the resulting text has been proposed [13]. But a user who just
finished generating a long document may not be willing to carefully
review it using a secure component before signing it.

2.3 The meaning of what you sign
Even with a secure means of reviewing material before signing

it, it may be difficult to know whether to sign it. The semantic-
level difference is the difference in cognitive understanding of the
meaning of a digital document between the signer and the relying
party. The syntax-level difference refers to the representation of
data at the syntax level, between two points within a system [1].

Many attacks may exploit a semantic difference. For example, a
replay attack exploits a certificate whose meaning is insufficiently
clear; a signed copy of a vague statement is dangerous because it
lacks context [35]. A Dalí attack exploits a polymorphic file; a
single file displays different contents depending on what applica-
tion is used to view it [6]. For example, a single file may contain
data which is valid both as PDF and TIFF. Using a program capa-
ble of displaying either format will choose which of the possibly
unrelated representations to display. Furthermore, it is possible to
digitally sign a document that references external material. If this
is done without care, one can alter the external material without
invalidating the digital signature [15].

2.4 The authorization of signatures
PorKI [31] is a portable device that attempts to allow users to

operate various workstations. The system stores keys on an ex-
ternal device that restricts access to the keys based on a security
policy and the trustworthiness of a particular workstation. PorKI
is somewhat coarse-grained in that it restricts keys based on hosts,
but enforces no similar restriction based on application or certifi-
cate type; this type of authorization is left to the workstation. We
consider Ethos to be complementary to PorKI because Ethos could
serve as the basis of a more robust workstation. Furthermore, the
PorKI PDA itself could be built upon Ethos (§4.4).

Many existing systems attempt to require that users explicitly au-
thorize signature operations. But present software layering is very
complex and makes this difficult. It is possible to fool common
OSs and web browsers into either revealing a secret key or authen-
ticating using client-side SSL without notifying the user [20]. Even
if the user is warned that a signature is about to take place, users
will often ignore security warnings [12].

2.5 Existing systems
The state-of-the-art certificate systems are susceptible to attack.

The Department of Defense (DoD) Public Key Infrastructure (PKI)
uses a smart card—the Common Access Card (CAC)—to perform
cryptographic operations and is one of the largest PKI installations
in the world [24]. The CAC isolates a user’s private key from the
rest of the system. However, the system also uses commodity soft-
ware on a legacy OS. Although the CAC is a trusted component,
it is used with an untrusted OS and applications. Furthermore it
typically does not have trusted input or output. As a result, CAC-
enabled systems are susceptible to PIN collection or WYSINWYS
attacks, resulting in the possibility of false authentication, fraudu-
lent signature and remote control [8]. As DoD networks have been
successfully attacked, such malicious software could be introduced
to them [19].

3. SECURITY REQUIREMENTS
For a system to be robust against attack, it must have a well

thought out set of security requirements, a design which meets
those requirements, and a careful implementation. Herein, we of-
fer a brief description and explanation of certificate-related security
requirements.

Trust relations specify the entities that are relied upon in or-
der to maintain the security of a system. For the user-application-
gatekeeper-keymaster model, this includes:

1. The authors of gatekeepers.

2. The authors of the OS, including the keymaster.

3. The manufacturers of hardware included in the system’s Trusted
Computing Base (TCB), including the gatekeeper’s input de-
vice and display.

4. Administrators who must be able to reason about and config-
ure the system.

5. Users who review certificates and approve signatures on them.

6. Individuals with physical access to the trusted system com-
ponents.

The model requires almost no trust in applications themselves. How-
ever, applications can undermine security by overwhelming a user
with security-related decisions (e.g., a user that is prompted to re-
view many certificates is likely to become complacent). Thus, ap-
plications should not unnecessarily burden their user.

Given the trust relations and requirements above, we now con-
sider preventing attacks by untrusted entities. Users review and
approve signatures; therefore, the security policy must assist users
in this task. After all, a smart card may help isolate a private key
but cannot help a user decide what to sign. Administrators must be
able to reason about a system, to restrict misuse, and enable proper
use. This requires that software is layered in a way to maximize
simplicity through the use of natural, pervasive, and compulsory
isolation mechanisms. The following section describes our design,
which was developed to enforce these security requirements.

4. DESIGN
The central goal of Ethos’ design is to provide the most secure

mechanisms possible. To achieve this goal, Ethos forgoes com-
patibility with existing systems. So that this incompatibility does
not hinder Ethos adoption [25], legacy OSs are relied upon to pro-
vide legacy compatibility. Ethos is simpler than its predecessors;
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Figure 2: Ethos’ user-application-gatekeeper-keymaster model

it allows programmers to have a better understanding of what their
programs do and increases the ability of system administrators to
reason about their security policies. The advantage is a reduced
number of bugs in an installation and therefore a reduction in the
number of security holes.

4.1 Architecture
Herein, we describe a high-level view of the Ethos certificate

architecture, forgoing details until succeeding sections. An OS-
wide, compulsory authorization affects how applications, gatekeep-
ers, and keymasters interact within Ethos. This mechanism reduces
the burden on administrators by enabling them to ensure certain
policy enforcement without auditing application code; it also al-
lows them to focus on a single set of mechanisms without the need
to understand idiosyncratic application settings.

Within Ethos, the keymaster is able to provide strong isolation
of the private key because it is implemented within the OS kernel.

Gatekeeper implementations are designed using the principle of
least privilege [29]. To meet this goal, gatekeepers are separated
from the applications they serve. The Ethos authorization sys-
tem allows an administrator to limit the types of certificates that
a gatekeeper may sign; restrict an application to communicating
with a single, properly controlled gatekeeper; and disallow non-
gatekeeper programs from requesting signatures. Gatekeepers must
provide trusted input and output so that a user may review and ap-
prove the signature of certificates.

Thus, the trusted software components of the Ethos certificate
system are the bootloader; the Ethos kernel, which enforces an
authorization policy and isolates private keys; gatekeepers, which
provide a trusted path to a user for certificate approval and request
signatures; and various administrative tools.

Ethos provides several methods for approving and producing sig-
natures:

Method 1 a native, kernel-based method that is explicitly autho-
rized by a user

Method 2 a native, kernel-based method with implicit authority

Method 3 a smart card-based method

Method 4 a method using an external device that integrates trusted
input and output.

For each pairing of method m and application a, gkm,a serves as its
gatekeeper2. Ethos’ authorization and type system ensure that each
2In fact, a single program, gm, is used as the gatekeeper for method
m; an administrator replicates gm within the filesystem to allow dif-
ferent security labels with different authorization restrictions, i.e.,
gkm,a.

gkm,a is restricted to (1) be invoked only by application a, (2) sign
certificates only of the appropriate types, and (3) act only on behalf
of allowed users.

Native Ethos signatures.
Consider method one and two in Figure 2. Method one is the

most straight forward and is sufficient for the most common re-
quirements. A summary of this description appears in Table 1.

For method one, application a may execute its gk1,a and pro-
vide it with the data to sign (labeled a). gk1,a displays the data for
the user and prompts the user to authorize the signature (labeled b).
Upon approval, gk1,a requests a signature from the keymaster by is-
suing a sign system call (labeled c); the keymaster grants the request
if the security policy permits it. gk1,a now has a signed certificate
and can provide it back to a.

In some cases, explicit user approval is not needed for a pro-
gram to generate a certificate. For example, a service might sign
on behalf of the organization. To support implicit user approval, an
administrator can authorize application a to use gk2,a which imple-
ments method two by skipping the user authorization step in Figure
2 (labeled b). Doing so implies that the user upon whose behalf a
operates pre-approves a’s requested signatures.

External signing devices.
Ethos is engineered to provide more assurance than existing sys-

tems, so the need for a separate smart card is less compelling. How-
ever, there may be cases where an external signing device is bene-
ficial. For example, a user may have to operate a workstation that
is not trusted, an organization may want strong guarantees that the
system does not leak a user’s private keys, or it may be easier for
users to maintain the physical security of a small device. We again
reference Figure 2, this time to describe how Ethos supports exter-
nal signing devices.

An external signer may or may not have trusted input and output.
When it does not, Ethos performs the review and approval process
labeled b in Figure 2 (in this case, the approval process might re-
quire that the user provide a PIN to authenticate to the device).
When the external device provides trusted input and output, Ethos
skips step b because it is known that the device will perform the
review and approval process on its own. In either case, Ethos treats
the device as the keymaster and the sign system call requests a sig-
nature from the device instead of calculating the signature within
the kernel.

4.2 Isolation
Ethos is able to better isolate private cryptographic keys because

they are kept in kernel space—they are never provided to user space.
Ethos implements signing as a system call (application request to
the kernel). This allows user space applications to request a sig-
nature of a certificate without having access to the private crypto-
graphic key and allows the OS to restrict what may be signed.

Ethos’ certificate system carefully implements cryptographic and
other sensitive operations in the Ethos kernel to resist side-channel
attack. Likewise, Ethos can zero private keys after use in order
to reduce the effectiveness of a cold boot attack; unlike many cer-
tificate systems, Ethos’ restriction of private keys to kernel space
means that sensitive memory locations are known by the kernel.

The design of Ethos allows further isolation using vTPM [3].
The presence of a Trusted Platform Module (TPM) facility would
allow the OS to encrypt users’ private keys using a host’s TPM pri-
vate key in addition to a user’s password for persistent storage. De-
crypting the keys prior to using them to execute a signature would
thus require two-factor authentication.



Method 1 Method 2 Method 3 Method 4

Gatekeeper
Ethos user space asks for
approval and then requests
signature

Ethos user space immedi-
ately requests signature

Ethos user space asks for
approval and then requests
signature

External device asks for
approval and then requests
signaturea

Keymaster Ethos kernel space performs signature if autho-
rized by system policy

External device performs signature if authorized
by device

Table 1: Signature methods
aIn this case, the Ethos user-space gatekeeper does not need to prompt the user for approval; instead, gk4,a immediately requests a signature
from the keymaster which, in turn, forwards the request to the external device.

The relative simplicity of Ethos’ kernel-based isolation is impor-
tant even in the presence of an external cryptographic device such
as a smart card, as described in §2.1. By restricting what a pro-
cess may sign, the Ethos kernel can protect against many attacks
that result in an unintended signature. For example, only a banking
application may request signatures for withdrawal requests. Other
applications are not authorized to sign such requests, so they may
not be exploited to do so. An organization could audit the banking
application to make it more robust against attack. Ethos is able to
enforce these restrictions because of the presence of type checking
and a carefully designed authorization policy.

4.3 Type checking
In Ethos, system objects—including files and directories—have

a type associated with them. More specifically, an administrator
provides a type’s layout—that defines the type’s variable fields—
and semantic description—that describes the meaning of these
fields—as the input to a hash function. The output of this function
is a type ID and uniquely identifies the type. The kernel maintains
a list of type definitions and corresponding IDs. The kernel data
structure describing a directory contains a type ID field from this
list and Ethos’ type checking guarantees that all files placed in the
directory are well-formed with respect to the type. As a result, all
files in a given directory are of the same type. The combination
of type checking, the sign system call, and a system authorization
policy allows Ethos to restrict what certificates may be signed.

The header used by Ethos certificates is shown in Figure 3. If
a type definition begins with fields matching the certificate header,
then that type defines a certificate sub-type. The fields highlighted
in gray are filled in by the OS and are therefore subject to the ad-
ministrator’s security policy. Each certificate contains the follow-
ing fields:

Size The size of the certificate header and its payload

Version A version field that facilitates future modifications of the
certificate format

Type ID The type ID

Public Key The public key that will validate the certificate’s sig-
nature

Revocation Server The server that maintains a certificate revoca-
tion scheme

Revocation Server Public Key A key that may be used to authen-
ticate the revocation server

Valid From, Valid To Fields that identify the time period during
which the certificate is valid

Certificate Signature The certificate’s digital signature

Size Ver.

Type ID (of semantic description and type layout)

Public key Revocation server

Revocation server public key Valid from Valid to

Certificate signature

Figure 3: Certificate header format

Following the certificate header is the certificate body which may
contain arbitrarily defined fields. While certificate headers have the
same structure across all certificates, certificate bodies are specific
to the type of certificate. Certificate bodies contain typed fields, and
can be viewed in a manner analogous to a paper form’s fields. Non-
variable data is never stored in a type field; instead it is contained
in the semantic description that contributes to the corresponding
type ID. The semantic description describes the certificate and its
fields; it is bound to a certificate sub-type as described in the next
paragraph.

In order to disambiguate its semantic meaning, the kernel stamps
each certificate with a type ID as part of the sign system call. Thus,
even with the existence of two types with the same layout the (i.e.,
either would pass the other’s well-formedness check) the semantic
meaning of a given certificate is unambiguous; a user cannot sub-
stitute a signed certificate of one type for another that has the same
layout but which he is not allowed to sign.

Certificate types—and the semantic description bound to them—
serve to establish a pre-defined logic between the signer and the
relying party, decreasing the semantic-level difference between the
two parties. Properly designed types also reduce syntax-level dif-
ferences by enforcing a canonical representation. The authorization
system regulates which certificates can be signed; unauthorized cer-
tificate types—such as those with machine-interpreted external ref-
erences or re-playable meaning—can never be signed. System ad-
ministrators restrict the certificates that may be signed to those with
vetted semantics and they do so in a centralized place, the OS au-
thorization policy.

4.4 Authentication and authorization

System policy.
Ethos provides for strong authentication of local and network

users. The authentication of remote users is built into the system-
level networking protocol implemented by Ethos. In addition, Ethos
also authenticates at the host level in a manner transparent to user-



space programs. This allows for the confident enforcement of au-
thorization policies based on both remote user and host.

Ethos has mandatory access controls [26]. A full discussion of
Ethos’ authorization system is beyond the scope of this paper. In
summary, Ethos authorization is composable, analyzable, and pro-
vides a broad set of authorization properties. Herein we discuss
only a host authorization policy; it is also possible to build autho-
rization in a distributed manner, for example, see [23]. Ethos’ au-
thorization properties support the production of trusted paths and
can restrict an application so that it may only communicate with its
own gatekeeper, ensuring an application only uses signature meth-
ods approved for the application. Ethos provides further control
through a certificate-specific permission that regulates the signing
of data based on the target file descriptor’s type—the maysign per-
mission:

( user , program ) maysign ( l a b e l )

This can be read as the given program (most likely a gkm,a as
discussed in 4.1), running on behalf of the given user, may request
signatures over certificates with the given label. In Ethos, direc-
tories bear a label (used for authorization) and a type (defining the
type of files the directory contains). As a result, the maysign permis-
sion restricts the generation and signing of certificates to authorized
types. This control serves to guarantee that certificates signed by a
given program are restricted to a set of authorized semantic mean-
ings and disallow signatures on the classes of statements that are
susceptible to the semantic attacks discussed in §2.3.

In addition, Ethos provides a verify program that receives a cer-
tificate from the network and performs the verification process.
Other programs may be restricted to receive data only from verify .
In this manner, an administrator can ensure that a given server pro-
gram acts only on requests with valid signatures.

Ethos is particularly well suited to implement the external sign-
ing device discussed in §4.1. This is because Ethos permissions are
dynamic; this means that Ethos may restrict a gatekeeper’s ability
to request signatures based on the host from which the gatekeeper
accepts a network connection. A user may have several accounts,
where each account has an associated signature keypair of a dif-
ferent assurance rating. In this manner, an external Ethos signer
could regulate the keys available when interacting with a given un-
trusted system, much like PorKI. Ethos has an advantage in that
these authorization decisions are regulated by the system’s unified
mandatory access controls. Furthermore, an Ethos-based signer
supports type-enforced network connections, allowing the benefits
previously discussed to extend to the device.

User authorization.
In addition to being granted permission by a system authoriza-

tion policy, all signature operations should be approved by a user3.
After all, certificates reflect the will of humans. Ethos’ manda-
tory access controls allow an administrator to create a trusted path
between a user and his gatekeeper so that the user may approve
signatures. Using such a channel, the gatekeeper displays the cer-
tificate fields and the fields’ semantic descriptions to the user. To
guard against homograph attacks [9], Ethos gatekeepers maintain
a bias towards a single language’s character set when displaying
certificates. The gatekeeper highlights non-native characters in its
output. After displaying the certificate, the gatekeeper prompts the
user to approve or cancel the operation. This compulsory user au-

3As described in §4.1, signature method two allows for implicit
approval that is restricted to administrator-selected applications.

System Signatures per second
Ethos (Method 2) 546
OpenSSL (2048 bit key) 26
OpenSSL (4096 bit key) 4
System Verifications per second
Ethos 243
OpenSSL (2048 bit key) 945
OpenSSL (4096 bit key) 262

Table 2: Signature measurements

thorization serves to prohibit the attacks described in §2.2, primar-
ily WYSINWYS attacks.

4.5 Interface

The sign system call.
The sign system call takes as parameters a directory file descrip-

tor and file name. After checking that the operation is authorized
and that the file has not been previously signed, Ethos adds the
directory’s type to the certificate, populates the other fields in the
header, signs the file, and writes it back to the filesystem. The rea-
son Ethos writes the file back to the filesystem instead of providing
the signed data in memory is to provide an audit trail on signed
certificates.

The verification process.
The verification process consists of a library call that makes var-

ious system calls. Like the sign system call, the verify library call
takes as parameters a directory file descriptor and file name. In-
voking the verification process implies that the calling program is
acting on the certificate (unless it is found invalid).

The library call verifies that the certificate has not expired, the
signer’s credentials have not been revoked, the certificate’s syntax
hash matches the expected type, and the digital signature on the
certificate is valid. The library call also logs that the system re-
ceived the certificate; at a minimum, Ethos maintains this log for
the lifetime of the certificate.

5. EVALUATION

5.1 Experiments
In this section, we compare our implementation of certificates

in Ethos to OpenSSL on Linux. OpenSSL is commonly used to
provide a subset of the capabilities provided by Ethos, implements
digital signatures, and has been optimized for production use. Fur-
thermore, OpenSSL provides benchmarking tools.

Experimental setup.
Ethos is a paravirtualized OS running on top of Xen 4.1. We

created two unprivileged, 32-bit guest domain images containing
Ethos and Linux 2.6.32.27 with OpenSSL 0.9.8p. Our test ma-
chines use AMD Athlon 64 X2 3800+ processors and 2GB of mem-
ory.

OpenSSL’s speed utility provided the basis of our experiments.
We used speed to measure OpenSSL’s RSA implementation. Note
that 1,024-bit RSA is considered unsafe today [38], and that 3,072-
bit RSA (128-bit security) is equivalent to current Ethos security.



Implementation Lines of code
OpenSSL (crypto only) 177,673
Ethos sign system call 138
Ethos verify library call 133
Reference application/gatekeeper 69
NaCla 51,709

Table 3: Lines of code measurements
aNaCl includes the implementation of ciphers not used within
Ethos. It also provides separate, optimized assembly source code
for IA32 and x86_64 and several sub-architectures. Much of this
is machine generated from qhasm code that is not distributed with
NaCl. We have included all of this code in our count.

Performance.
Table 2 describes our results from comparing the signature rate

of Ethos to OpenSSL. In all measurements, Ethos outperforms OpenSSL
when performing signatures. We attribute this primarily to the
speed of the NaCl library. Our results demonstrate that Ethos main-
tains competitive performance despite moving the sign operation
into a system call.

Our implementation of certificates was only recently completed,
and we have just begun the performance tuning of Ethos. We
believe that our numbers have substantial room for improvement.
Nevertheless, they are currently competitive with OpenSSL.

5.2 Code metrics
We used the tool cloc4 to count the lines of code in Ethos and

NaCl and to compare our results to OpenSSL. Table 3 displays our
results. OpenSSL is a much larger code-base than Ethos because it
provides many cryptographic options and runs on many operating
systems. The design decisions behind Ethos have worked to keep
its code simple and to shield application developers from making
technical cryptographic decisions. As a result, Ethos’ full imple-
mentation of certificates is small enough for a careful assurance
review.

6. CONCLUSION AND FUTURE WORK
Ethos simplifies the generation and verification of certificates

while providing certificate set authorization and isolating private
keys. These protections are provided in the OS, so that they can-
not be bypassed and attacks against applications do not subvert OS
protections.

The design of the protections arises from a careful analysis of
the potential attackers, the resources they might employ, and the
classes of vulnerabilities which have been exploited in the past.
Most of all, it considers trust relations and the entities that they
rely upon for secure operation; trust relations are always issues of
policy and thus must be configurable.

Ethos is able to reduce application complexity while providing
strong protections which may not be bypassed. This was achieved
through:

• co-design: has enabled the interaction of different parts of
the certificate system to be simplified and analyzed.

• types and a sign system call: combined, these allow for cer-
tificate set authorization.

• isolation: Ethos ensures that private keys are never available
in user-space.

4http://cloc.sourceforge.net/

• transparent mechanisms: specific details about signatures,
cryptographic integrity, and authentication have been added
in a way which is invisible to the application.

• higher abstraction level: allows security properties to be pro-
vided uniformly.

• configuration simplification: Ethos uses strong techniques
everywhere. (Traditionally, implementations vary cryptographic
strength to save computation, but this increases the difficulty
of assurance).

• simplification of administration: system administrators pro-
vide only policy, determining who can sign what and how the
resulting certificates may propagate through the system. This
gives administrators adequate control without overwhelming
them with options.

Work that remains to be done in Ethos includes vTPM integra-
tion, support for external signing devices, performance tuning, code
auditing and user interface work. Moreover, this paper focuses on
certificates per se; therefore, an encompassing PKI is beyond its
scope. We make no claim that Ethos’ digital identity system could
effectively operate on a large scale without PKI; for example, an
Ethos certificate contains a public key but it is PKI that would link
this public key to a real world entity. Moreover, the negotiation
of trust between two entities is a complex topic [30, 5, 36]. PKI
is a difficult but important problem and we are investigating it in
parallel [32, 33, 34]. Previous work in PKI [28, 37] influenced the
design of our certificates.

Properly handling certificates within a system is a difficult task.
It follows that an implementation should be performed after careful
consideration and at the appropriate layers within a system. We be-
lieve that our design of Ethos makes more protections compulsory
and frees both developers and administrators from being exposed
to unnecessary complexity. We further believe that this approach
will reduce the security bugs found in certificate systems.
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