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SUMMARY

This dissertation describes the network programming environment provided by Ethos, an

operating system designed for security. Often, the interfaces provided by existing systems are

very low-level. Experience shows that programmers on these systems have difficulty managing

the resulting complexity when writing network applications. They must implement or inte-

grate their own key isolation, encryption, authentication protocols, and authorization policies.

Administrators must configure the same, often independently for each application.

Ethos eases the burden on application programmers and system administrators by providing

more abstract interfaces and reducing code duplication. Instead of relying on applications to

protect secret keys, Ethos keeps them in kernel space and allows their indirect use by appli-

cations through cryptographic system calls (e.g., sign). Ethos encrypts all network traffic and

performs network authentication at the system level. Moving these protections to the operat-

ing system kernel allows Ethos to provide more informed access control, reducing the need for

application-internal controls.

Thus Ethos provides a number of security properties unavailable in other systems. In many

cases, Ethos application developers can write robust applications with zero lines of application-

specific security code. Likewise, administrators do not need to learn application-specific con-

figuration options. Instead, the majority of their work uses system-wide mechanisms, affecting

all applications individually and the system in aggregate.
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SUMMARY (Continued)

Many of the protections provided by Ethos sound straightforward to implement. However,

we shall show that the system design that makes them possible is highly interconnected and

not entirely self-evident. For example, how can Ethos authenticate at the system level when it

is impossible for a system administrator to know every user that may be encountered on the

Internet? In other cases, our design decisions became feasible only recently due to developments

in hardware. Our hope is that our design appears clean, concise, and possibly—in retrospect—

somewhat obvious.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computer networking is ubiquitous. Its rise has enabled radical advancements in both

communication and computing over the past few decades. Yet modern computer systems are

facing a crisis. Networking has a dark side—it often exposes a computer to a population of

attackers that spans the globe. This presents a problem both in that the sheer volume of attacks

is staggering [1] and crimes easily span multiple, international jurisdictions [2]. The attackers

range from novices to experts and often profit from selling their services [3; 4; 5]. Many appear

to work for sovereign states, so their activities can be extraordinarily well funded. Thus attacks

are often both effective and difficult to prosecute, and they result in damage ranging from

personal inconvenience to matters of national security [6; 7; 8]. Experience indicates that

current networked systems are unable to withstand the attacks that arise on the Internet.

Application

Libraries

Programming Language

Operating System

VMM

Hardware

Figure 1: An abstract system strata

How did we arrive at the current state of af-

fairs? Let us first take a high-level view of sys-

tem design, and then examine a critical prop-

erty common to current systems. Computer

systems are organized into strata—a layering

that begins at hardware and progresses to an

1
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application. Each layer exports a set of interfaces to the layer above it. As we depict in

Figure 1, these layers include hardware, an optional Virtual Machine Monitor (VMM), an

Operating System (OS), programming language facilities, libraries, and applications.

A particular software strata is a reflection of many design decisions. For example, an

architect may design an OS’s system calls—which embody the interface exported to the stratum

above the OS—with a very low level of abstraction. Essentially, this maximizes flexibility while

imposing on higher layers (i.e., libraries and applications) the implementation of functionality

not defined by the system calls. Saltzer et al. presented the end-to-end argument that favored

this design in 1984 [9]. The authors reasoned that adequate performance and flexibility required

that mechanisms such as bit recovery, encryption, and duplicate message suppression be deferred

to applications: that they should be end-to-end. This consideration drove the design of today’s

mainstream OSs and the distributed systems built on them.

While an OS that provides a low level of abstraction (consistent with the end-to-end princi-

ple) maximizes flexibility, it increases the burden on application developers and administrators.

This has many consequences. In POSIX, networking is very low level; it does not even provide

for strong authentication. Such security functionality is left to applications or the libraries they

build upon, and this leads to duplicating critical code. This duplication increases a system’s

attack surface. As an example, the Fedora Project’s Linux distribution contains three major

Transport Layer Security (TLS) C libraries: OpenSSL, GnuTLS, and Network Security Ser-

vices (NSS). Fedora’s effort to consolidate on NSS [10] and thus aid system assurance began

in 2007 and is still ongoing, having faced many obstacles. Furthermore, libraries must often
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Figure 2: A particular system strata: end-to-end security

be rewritten for different programming languages. Thus a typical strata begins to resemble

Figure 2. We call this the end-to-end-security strata, and POSIX serves as a commonly-used

example.

Even if it were feasible to standardize on a single TLS library, the amount and complexity

of code required to properly invoke the library is often non-trivial. Well-meaning and other-

wise competent developers routinely misuse TLS libraries [11; 12], resulting in vulnerabilities.

Georgiev et al. showed that an application from a major bank did not verify the identity

certificates associated with its encrypted connections and thus was vulnerable to Man-in-the-

Middle (MitM) attacks. In other cases, applications do have protections, but they can be

bypassed by exploiting bugs in the application.

For a particular example of the subtle issues that arise from the end-to-end-security strata,

we studied the Postfix email server. Postfix was written by a security expert, and establishes a

rough limit on our ability to develop a robust application on POSIX. Yet even Postfix contained

a flaw in its use of OpenSSL that resulted in the possibility of a plaintext injection attack [13].

Like Georgiev et al., we found that the volume of security-critical code necessary to invoke

security libraries in POSIX applications is large, leaving much room for such errors. Postfix
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contains around 2,000 lines of code to support robust networking (notwithstanding the code

in the libraries themselves). Many other applications share this pattern: The Dovecot IMAP

server, Apache, and the third-party mod auth kerb Apache module contain 15,000, 1,800,

and 1,500 network-security-related lines of code, respectively. Apache’s mod ssl is made up

of 11,700 Lines of Code (LoC). Moreover, fixing an application like Postfix does not preclude

other applications from having the same flaw. In fact, Pure-FTPd and the Cyrus IMAP server

were later found to have the same plaintext injection vulnerability as Postfix [14; 15].

The HiStar authors state: “experience has shown that only a handful of programmers have

the right mindset to write secure code, and few applications have the luxury of being written

by such programmers” [16]. We believe that an end-to-end-security strata provides application

programmers and administrators too many opportunities to make network security errors. On

an end-to-end-security strata, security protections must be present in each application. Here

such protections can be:

(1) missing due to application programmer omission,

(2) missing due to application misconfiguration, or

(3) negated by exploiting an application bug.

We call the class of violations that can result from these vulnerabilities application-based sub-

version.

Experience shows that it is simply too difficult to develop large, robust network applications

when significant security responsibilities fall on each application. Instead, we advocate an
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increased reliance on the natural OS property of complete mediation, whereby the OS verifies

the authority of every object access [17]. The OS kernel is the portion of a computer’s software

that runs in the processor’s privileged mode, that is, during execution it has access to the

processor’s privileged instructions. In contrast, programs or applications are that portion of a

computer’s software without direct access to privileged instructions. Thus programs rely on the

OS kernel to mediate access to hardware and kernel data structures. This is most often done

through the use of a system call , a type of procedure call that invokes a kernel entry point.

The OS is the first software layer that completely mediates all program accesses to external

resources [17]. This includes communication between processes, with hardware devices, and

with other hosts on a network. Because of this, the OS is in a unique position with respect to

security. Properly designed and implemented, its controls are absolute; they cannot be bypassed

by applications. For this reason, we propose that an OS should provide basic, universal, and

threat-appropriate protections, and application-specific end-to-end protections should only add

to this baseline.

Luckily, technological advances redefine the requirements which lead to end-to-end design.

In many cases, performance is no longer significantly affected by the presence of strong pro-

tections. In fact, multi-core processors often sit idle. Network latency—not the encryption

that once taxed processors to provide secret communication—now dominates performance.

Many researchers have thus demonstrated that universally encrypting communications is fea-

sible [18; 19]. Even many resource-constrained, mobile devices can process encryption at Gb/s

rates [20]. Moreover, the rise of commodity virtualization also affects the end-to-end principle.
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The “end” can now be an OS instead of an application. Multiple OSs running on a single

computer give rise to tailored OS interfaces that can maintain appropriately rich but consistent

semantics for all of their applications.

1.2 Introduction to Ethos

Ethos is an OS designed to provide a level of robustness commensurate with modern threats.

To minimize complexity, Ethos forgoes backward compatibility [21] and provides system calls

with semantics that benefit the security of the entire system. This resembles how application

security is affected by programming-language semantics. For example, the problem of fixing

application buffer overflows is solved for all applications by using a strongly-typed programming

language. This strategy is much more effective than using a programming language without

type safety and trying to avoid buffer overflows in each application. Similarly, OS system

call semantics can have a profound impact on application robustness. Of course, this idea

has been applied to OSs before: a similar philosophy drove the move from cooperative to

preemptive multitasking. (There still are particular systems which benefit from deterministic

cooperative multitasking; likewise, we expect Ethos to be suboptimal for some non-security-

critical applications.) Yet while programming language semantics continue to evolve (e.g.,

Haskell, Erlang, Go, Scala), OS semantics have been relatively unchanged for decades [22].

Ethos reduces opportunities for application-based subversion by providing a maximal set of

protections at the OS stratum while remaining general enough for modern secure applications.

Ethos targets Virtual Machines (VMs) instead of bare metal. A VM-based approach means

that other OSs can coexist with Ethos. This allows Ethos to avoid the application trap, in
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which no one will use a new OS because it has no applications and there are no applications

because there are no users. Instead, it is reasonable to use Ethos even for a single application.

More importantly, Ethos can remain focused on security, while other OSs can provide seman-

tics appropriate for other application requirements (i.e., VMs refine end-to-end as previously

mentioned). We describe some of the benefits and drawbacks of our VM-based approach in

more detail in Appendix D.

Ethos currently provides memory paging, processes, protected networking, types, and a

filesystem. We have completed 39 system calls and several related Go packages. On this, we

have built a shell, basic tools, a remote shell utility, and a networked messaging system. We

have ported Go and Python to Ethos for the purpose of writing applications. We have also

ported C, but only to implement the OS and support other programming languages.

1.3 Threat model

Chapters 4–9 will describe Ethos’ security properties; here we describe the threats we de-

signed Ethos to resist. We are broadly concerned with the confidentiality, integrity, and avail-

ability of network communication. The attacker we consider obviously will try to directly

intercept communications to violate our protections, perhaps by defeating protocols [23; 24],

assuming control of network media, deploying counterfeit services, or making odd requests to

Ethos-hosted services. He might also attack a system more indirectly, by running applications

on a target Ethos host (including malicious software), controlling remote hosts, or subverting

other unprivileged virtual machines. He should not be able to use these capabilities to vio-

late network security either. For example, an application buffer overflow on Unix can cause
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the application to misuse TLS, but we will describe why Ethos’ strata makes such a result

impossible.

Denial of Service (DoS) attacks from known users are expected to be addressed by a host’s

authorization policy or non-technical means. An anonymous attacker might try to affect avail-

ability, through transmission-, computation-, and memory-based DoS. An attacker with enough

resources (or control over the network) can always affect availability, so we attempt to drive up

his costs by making his attack at least as expensive as the cost to defend against it. Here we

want to address equally non-MitM and MitM attackers. That is, the ability to spoof the source

IP address of a packet and capture a reply should not allow much easier attacks.

Although an attacker might have a local user account, we explicitly trust system admin-

istrators; thus they are outside of the threat model. We do not entirely ignore an attacker’s

ability to have physical access to a computer’s components. While such attacks are exceedingly

difficult to defend against, we attempt to mitigate them. Ethos’ consolidation of cryptographic

operations in the kernel makes it easier to enforce the use of side-channel-resistant crypto-

graphic implementations, track and destroy keys, and enforce the use of Trusted Platform

Modules (TPMs) [25]. Most importantly, defenders must also consider physical security and

personnel issues.

If an attacker does gain complete control over a client or server, through physical access or

otherwise, he will be able to decrypt very recent and future packets, but, given some symmetric

key lifetime i, he should not be able to decrypt packets older than i nor identify the parties

involved in this communication. We refer to this as approaching Perfect Forward Secrecy
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(PFS). True PFS implies i = 0, but, for performance reasons, i is generally positive but

sufficiently small. PFS is important because it limits the damage resulting from a computer

that is physically compromised.

1.4 Outline of the work

The central hypothesis of the Ethos project is that careful software design can guarantee

that certain security properties hold even if we cannot predict future applications. Here two

critical questions are:

• What design and implementation properties must a system have to thwart the adversaries

described above? And, of course,

• What particular design will guarantee these properties?

The first question is addressed by the strength and assurance literature. The second is the main

motivation for this work. Thus our focus complements the substantial and far better understood

work on implementing reliable OSs, for example by microkernels [26; 27; 28; 29; 30; 31].

Trusted Network Interpretation [32] defines several network-related security services, which

we refer to as requirements R1–R7:

R1: Authentication identifies the subjects that interact with a system.

R2: Header and data integrity (communication field integrity) means that a system pro-

tects data present in network communication from unauthorized modification. This in-

cludes header fields and application data.
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R3: Non-repudiation provides unforgeable proof of submission or receipt of data. In partic-

ular, non-repudiation of origin and non-repudiation of receipt can be separate properties

[33].

R4: Denial of Service resistance (continuity of operations/protocol-based DoS protection

mechanisms/network management) means a system will continue to provide service to

legitimate users even when an adversary attempts to consume a disproportionate number

of system resources. In particular, both protocols and network management facilities

must be designed to be robust against DoS attacks.

R5: Data confidentiality protects against unauthorized disclosure. Here we are most con-

cerned with the ability of an adversary to passively observe data that one computer

transmits to another over a network.

R6: Traffic flow confidentiality is concerned with disrupting traffic analysis attacks, which

derive information from message length, frequency, or participants.

R7: Selective routing means that messages may be differently routed as requirements

change. The necessity for this might arise because network links are unavailable, links

pass through the control of an adversary, or the cost of a link changes.

A general-purpose robust networked system must address each of these requirements. In addi-

tion, hosts must implement the protections required by the Trusted Computer System Evalua-

tion Criteria [34]; of particular interest to networking is authorization (R8). For each of these

security responsibilities, we describe why existing solutions fall short in Chapter 2.
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We have mentioned that the OS kernel mediates all access a program has to its environment,

including users, hardware, other programs, and remote services. Ethos’ foremost strategy is to

use complete mediation to make network-security-related protections universal. Ethos brings

several security responsibilities into the kernel, making them compulsory from the point of view

of programs and thus removing opportunities for application-based subversion. The universal

properties provided by Ethos are:

P1: Network authentication Ethos assigns every user (and process) an immutable, unforge-

able Universally Unique ID (UUID), even in the cases of previously unknown or anony-

mous network users. No user can assume another user’s UUID without first compromising

a secret cryptographic key, and neither does a compromise of a network authentication

server compromise these keys.

P2: Network encryption Ethos encrypts all application-layer network messages and a max-

imal amount of lower-network-layer data.

P3: Type checking Ethos subjects all application input and output to a type checker so that

no application receives ill-formed input or produces ill-formed output.

P4: Key isolation Ethos isolates secret cryptographic keys so that they are never shared with

applications. Furthermore, several of Ethos’ features help ensure user keys are used only

with user approval.

P5: Denial of Service resistance Ethos’ network protocol provides built-in DoS protec-

tions.
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TABLE I: Comparison of network-security requirements with Ethos security properties, along
with a comparison with POSIX

Assurance
literature
requirement

Ethos
protection

Comparable POSIX implementation

R1 P1 Left to application code

R2 P2, P3 Either IPsec or left to application code

R3 P4 Applications have access to secret cryptographic keys

R4 P5 Protocol-dependent, generally weak universal protections

R5 P2 Either IPsec or left to application code

R6 P2∗ e.g., IPsec tunneling or (for strong protections) Tor

R7 n/a† n/a†

R8 P6
Integration between system-wide authorization systems and
application-provided network authentication is difficult

∗Additional protections delegated to applications due to performance requirements
†Left to lower-level protocol processing (i.e., networking layer)

P6: Network authorization Ethos’ authorization system does not allow unauthorized users

to interact with user-space application code in any way.

Traffic flow confidentiality is partially addressed by Ethos by protecting host-to-host connections

within a single cryptographic tunnel, but additional protections (e.g., white noise or onion

routing such as provided by Tor [35]) are not made universal because of the overhead they

impose. We consider selective routing a characteristic of the network layer, which exists below

Ethos’ networking. Table I compares the assurance literature requirements to the protections

provided by Ethos.

After presenting an overview of Ethos’ networking Application Programming Interface (API)

in Chapter 3, we describe Ethos networking from the bottom up, starting with Ethos’ network
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protocol. Ethos’ rich system calls place certain demands on its network protocol, including key

negotiation, encryption, and remote-user authentication. It is not possible for an Ethos appli-

cation to transmit cleartext data over the network, so Ethos must perform well—maximizing

throughput and minimizing latency—despite its strong protections. We found that existing

network protocols do not meet these requirements, so we designed Minimal Latency Tun-

neling (MinimaLT). MinimaLT is a transport-layer network protocol whose structure pro-

vides integrity and confidentiality guarantees while minimizing latency. Chapter 4 describes

MinimaLT.

Every security evaluation class described in Trusted Computer System Evaluation Crite-

ria [34] addresses identification and authentication. This should come as no surprise—after all,

if you don’t know who you are dealing with then how do you decide what to allow them to do?

In Ethos, all network requests are authenticated before any application code runs. Chapter 5

focuses on authentication in Ethos.

Types have long been enforced in programming languages to ensure higher quality programs.

We have applied type safety to interactions between programs by enforcing type safety at key

points in the Ethos kernel. Ethos files and Inter-Process Communication (IPC) channels have a

type associated with them, and Ethos ensures that no program reads or writes ill-formed data

with respect to these types. We describe this in Chapter 6.

Signed certificates provide more restrictive properties than general-purpose authentication

and are used to authorize especially sensitive operations. For example, I may wish to request

a withdrawal of $200 from my bank account in such a way that the bank could not repeat the



14

request without my approval at a later time. Likewise, my bank should demand reasonable

assurance that precisely this request did, in fact, come from me. Chapter 7 will describe Ethos’

unique approach to certificates.

Ethos provides Mandatory Authorization Controls (MACs). Like Security-Enhanced Linux

(SELinux), Ethos considers both the user and executing program when making authorization

decisions. Such fine-grained controls are critical to thwart our attacker, who may try to fool

users into running malicious programs. As we will describe, Ethos has relatively few system

calls, and this simplifies authorization policy specification. This differentiates Ethos autho-

rization from SELinux, which is complex [36; 37] partly because Linux’s system call interface

is complex and low-level. In particular, Ethos can make authorization decisions based on a

remote user because network authentication is performed by the OS, and Ethos can restrict the

production of certificates and other critical types. Chapter 8 focuses on Ethos’ authorization

system.

Finally, we present a series of case studies in Chapter 9 and conclude in Chapter 10. As

we conclude, we summarize the lessons we have learned, provide a summary of Ethos, propose

directions for future research, and summarize the software resulting from this work.



CHAPTER 2

PREVIOUS WORK

We begin our discussion of previous work by describing strength and assurance, because

this literature presents what is required of a robust system in a broad sense. Such work begins

to answer the question: What design and implementation properties must a system have to

thwart the adversaries described in Chapter 1? Following that, we present a survey of the

network-specific security services required to satisfy these requirements (§2.2). Next we describe

some particular authentication and protected network protocols (§2.3). Finally, we describe a

series of existing OSs that integrate security services and protocols in an attempt to satisfy

strength and assurance requirements (§2.4). These represent particular designs, but we show

that their state-of-the-art security-mechanism compositions often fail to provide a robustness

commensurate with the threat found on the Internet.

2.1 Robustness

The strength of a system design refers to how much effort an adversary must expend to defeat

a perfect implementation of the design [38]. A high degree of strength is difficult to obtain; the

US National Security Agency (NSA) spent ten years designing and analyzing the strength of

VINSON, a specialized voice encryption device [39]. Adequate strength in more general systems

is even harder to achieve. Clearly a tension remains between strength requirements and the

pace of innovation many markets demand.

15
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Much work has been done to examine the requirements of a high-strength design. Published

in 1985, the US Department of Defense (DoD)’s Trusted Computer System Evaluation Criteria

[34] (the Orange Book) provides security criteria and methods of evaluation that may be used

to produce strong computer systems. Here we define four key terms found in the Orange

Book—the security policy, assurance, a system’s Trusted Computing Base (TCB), and covert

channels—and then we summarize the requirements set forth by the Orange Book.

A security policy is the set of constraints an organization operates under in order to preserve

the organization’s continued effectiveness, and such policies must reflect the broad operational

goals of the organization. Thus violations to the security policy—assuming the security policy

is proper—cause harm to the organization. Such harm might threaten safety, privacy, financial

posture, or infrastructure [38]. Security policies are organization-specific, but generally address

confidentiality, integrity, and availability. Of course, a draconian security policy is not proper—

such a policy itself reduces an organization’s effectiveness. Non-technical policy includes hiring

practices and physical security, and policies historically have been enforced by procedures,

organizational culture, and rules of law. Here we are interested in the technical application of

a security policy as a set of rules that govern a computer system.

Assurance provides confidence that a system is correctly implemented and that its security

mechanisms enforce an organization’s security policy. Life-cycle assurance applies to system

design, development, and maintenance. Through each phase of a system’s development, the sys-

tem must be guarded against unauthorized changes, and it must be reevaluated when changes

occur that could undermine its original assurance. Operational assurance minimizes the like-
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lihood that a system’s protections could be circumvented during use. Thus a highly assured

system of strong design provides a high level of robustness, that is, it continues to function

properly (i.e., does not violate the security policy) even in the presence of an intelligent adver-

sary.

A system’s TCB is the collection of components responsible for the enforcement of the

security policy, despite the presence of other, untrusted components. That is, a good TCB

minimizes the chance that an attacker can use (untrusted-) application-based subversion to

violate the security policy. A TCB commonly includes hardware, firmware, and both OS

and application software. (We avoid the alternative name security kernel [40; 41], because

a TCB/security kernel is generally broader than the similarly named OS kernel, as defined in

Chapter 1.) Lampson points out that it is not entirely true that a correct TCB denies untrusted

components the ability of violating the security policy—untrusted components remain able to

affect availability. Thus Lampson claims that it is enough for the TCB to be fail-secure:

a trusted component that fails may cause the system to deny access that should have been

granted, but never grant access that should have been denied [42]. A TCB should be as small

as possible so that it can be carefully assured.

A covert channel is a residual communication medium that can be used to violate the

security policy. The Orange Book classifies covert channels as either storage- or timing-based.

In storage covert channels, one process stores information that is later directly or indirectly

read by another. Timing-based covert channels use the timing of events as a signal. Covert

channels can be very difficult to remove from a system completely because many are a result
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of decisions necessary to achieve adequate performance; reasonable countermeasures include

reducing the bandwidth of covert channels or detecting their use.

The Orange Book describes the broad requirements of four assurance divisions: D–A. D

provides minimal protection, C provides discretionary protection, B provides mandatory protec-

tion, and A provides verified protection. Each division contains one or more classes, designated

with a numeral (e.g., C1).

Each security level in the Orange Book addresses six fundamental security requirements:

(1) A system must identify the subjects with which it interacts (authentication).

(2) Objects must bear some type of access-control label.

(3) A system must allow for the specification of a policy that regulates the access of objects

by subjects (authorization). Systems reference object labels and subject identities when

making these authorization decisions.

(4) A system must maintain accountability information, so that an audit can identify the

individuals who performed security-related actions.

(5) It must be possible to evaluate a system to establish the sufficiency of the previous re-

quirements’ implementation.

(6) It must be impossible to subvert these requirements.

What makes the Orange Book’s strictest division, A1, unique is the high degree of formality

it requires. A1 requires a formal model of a system’s security policy and a mathematical proof

that the model supports the policy. In addition, the system must carefully define its TCB, show
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that its TCB supports the system’s security policy, verify the implementation of the TCB, and

formally analyze the system to identify covert channels.

Trusted Network Interpretation [32] (the Red Book) applies the Orange Book notions to

the domain of networked systems and describes several services unique to networking. The

classes of services described by the Red Book are communication integrity, denial of service,

and compromise protection. These classes contain the protections introduced in Chapter 1:

network authentication, header and data integrity, non-repudiation, denial of service resistance,

data confidentiality, traffic-flow confidentiality, and selective routing. We discuss each of these

in more detail in §2.2.

The International Organization for Standardization (ISO) Common Criteria for Information

Technology Security Evaluation [43] is a framework for specifying security requirements and

then implementing and evaluating them. The Common Criteria assigns Evaluation Assurance

Levels (EALs) that indicate the level of assurance achieved. These levels range from EAL1,

functionally tested, to EAL7, which requires a formally verified design.

Ultimately, high assurance levels—above the EAL4 rating of today’s widely used OSs [44]—

are possible only if a system has low complexity and security is part of its initial design.

Unfortunately, existing systems are very complex and were designed in a time of low security

requirements. They have accreted functionality over time, resulting in extraordinarily difficult-

to-understand systems and, therefore, security holes.
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2.2 General security services

We now present a series of general security services which satisfy the requirements set forth

by the strength and assurance literature. This includes cryptographic primitives, which provide

the basis of many security services; traffic-flow confidentiality; DoS resistance; authentication;

authorization; and type safety.

2.2.1 Cryptographic primitives

Cryptography most often provides network header and data integrity, non-repudiation, and

data confidentiality (R2, R3, and R5). We discuss three cryptographic primitives—encryption,

hashing, and signatures—because each is used in Ethos. Encryption protects secrets and has

a long history [45]. Typically, a small cryptographic key and arbitrary plaintext serve as input

to an encryption algorithm or cipher . This algorithm produces ciphertext as output. Given

some ciphertext, it should be infeasible to transform the ciphertext back into plaintext without

access to a particular secret (either the key used to encrypt or a key mathematically-related to

the encryption key). An attacker could try to enumerate all of the possible keys, but a typical

128-bit key might be any of 2128 possibilities. Thus ciphers are specialized enough that their

strength can be stated in a straightforward way: a cipher provides 128-bit security if breaking

the cipher is equivalent to finding the correct key from 2128 possibilities.

The use of a key by ciphers is a convenience because the same key may be used to encrypt

many messages. The problem of protecting a large secret—the sequence of messages—is re-

placed with protecting a small one—the key. Only the key (and plaintext) must remain secret;
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the cipher itself can be well-known. This is known as Kerckhoffs’ principle [46], and it allows

ciphers to be subjected to rigorous examination.

In reality, an encryption algorithm or its implementation might contain a flaw that reduces

the number of keys that could have produced a given ciphertext. Such flaws reduce the work

an attacker must do to find the corresponding plaintext. Often, such flaws are very subtle.

For example, some Advanced Encryption Standard (AES) implementations succumb to side

channel attacks, whereby an attacker reduces the number of possible keys by observing the

effect of memory caches [47]. Other attacks include observing power usage during cryptographic

operations [48]. Careful implementation—including introducing random, input-independent

delays; ensuring operations’ inputs do not affect their timing; or using data masking [49]—can

mitigate these attacks, but such protections reduce performance. Other ciphers avoid this severe

performance loss because they are resistant in their default, high-performance implementation

to software-based side-channel attacks.

Cold boot attacks provide another threat to key isolation [50]. These attacks exploit the

data retention properties of DRAM to extract information from a memory chip after turning

off a computer and physically removing its DRAM. The attacker can extend the duration of the

chip’s data retention and thus increase the likelihood of success by decreasing the temperature

of the chip. Zeroing memory is the most obvious countermeasure for cold boot attacks (e.g.,

Miller et al. mention limiting the existence of plain-text passwords [51]), but some keys are

necessarily persistent and often no single program is aware of where in memory all keys reside.
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Ethos uses ciphers that belong to one of two categories: symmetric or asymmetric. With

symmetric ciphers, both parties participating in a communication have a copy of the same key.

They use this single key to transform plaintext to ciphertext and vice versa. With asymmetric

ciphers (public-key cryptography), each participant maintains a pair of mathematically related

keys [52]. One is kept secret and the other is published. If one key transforms plaintext to

ciphertext, the other reverses the operation. Asymmetric ciphers tend to operate more slowly

than symmetric ciphers and also require a larger key size to achieve the same strength. Despite

this, their properties are necessary for many cryptographic constructions. For example, Diffie-

Hellman key exchange (DH) allows two parties to negotiate a shared secret after providing each

other with their public keys. (This subsumes the need to distribute O(n2) secret keys using

a separately secured channel to support pair-wise-isolated communication amongst n parties,

assuming each party knows the identity associated with each public key.) We use a particular

variation of DH, Elliptic Curve Cryptographic (ECC) DH [53], in Ethos. We discuss another

application of asymmetric ciphers, cryptographic signatures, below.

A cryptographic hash function takes as input arbitrary text t and produces a fixed-length

hash h. Such a function H is designed so that it is not feasible to (1) given h, determine

the original input t to H that produced h; (2) given t and h, find some other text t′ such that

H(t) = H(t′) = h; or (3) produce some u and u′ such that H(u) = H(u′). Uses of cryptographic

hashing include integrity checks, naming, and cryptographic signatures.

A cryptographic signature function takes as input a user u’s secret asymmetric key ku and

an arbitrary message m and produces a digital signature. The digital signature serves as proof
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that u endorsed m. This property of non-repudiation holds as long as u maintains the secrecy of

ku, the correspondence between u and ku is known, and signatures are generated using ku only

when directed by u. Public-key ciphers such as RSA provide a convenient means to produce

digital signatures [54]. First, u hashes m to produce h. Next, u encrypts h using his secret

asymmetric key. Then u publishes this ciphertext along with m. Someone who wants to verify

the signature transforms the ciphertext back to h using u’s public asymmetric key, hashes m,

and compares the results. If the comparison matches, then the signature is valid.

2.2.2 Traffic flow confidentiality

Even encrypted messages can leak information. During World War I, the German Army

used a cipher called ADFGVX for communications between corps-and-above-level headquarters.

Although the Allies had not broken ADFGVX, they we able to predict several German offensives

merely due to an increase in the number of transmissions that used the cipher [55]. The Red

Book states that message length, frequency, and protocol fields (such as IP addresses) disclose

useful information to an adversary. Transmitting white noise can blind message lengths and

frequency, but decreases the throughput of the network.

Network-layer protocol fields are difficult to hide, as they are necessary for the delivery of a

message. Tor [35] provides robust network anonymity through the use of onion routing . In onion

routing a host chooses a path of relays, r1, r2, . . . , rn, with corresponding keys k1, k2, . . . , kn,

between it and a message’s destination. Before transmitting, the host encrypts the message once

using each of kn, kn−1, . . . , k1 before transmitting it to r1. Each relay decrypts the message with

its key, revealing the next hop, and then passes on the partially decrypted message. Eventually
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the message is transmitted to its final destination, but (assuming n ≥ 2) no r knows the entire

message path or the message contents. Another technique is to simply broadcast a constant

signal that alternates between encrypted messages and random data to all possible recipients.

This is the presumed purpose of number stations, which transmit continuous streams of numbers

using shortwave radio [56].

2.2.3 Denial of Service resistance

A DoS attack violates system availability. Here an attacker’s requests overwhelm a host,

leaving its remaining resources insufficient to service requests from other parties. There are

three categories of network DoS attack: network exhaustion attacks, memory exhaustion at-

tacks, and computational attacks. A single host cannot thwart an attacker with overwhelming

resources [57], but countermeasures can protect against attackers with fewer resources. DoS

countermeasures are worthwhile even against a successful attacker, because they consume an

attacker’s resources and thereby limit the number of victims.

The countermeasure for network exhaustion attacks requires increasing the throughput of

the network, although a protocol can avoid contributing to such an attack by removing the

opportunity for amplification attacks. In an amplification attack, the attacker makes network

requests that elicit a larger response, exploiting a side effect of a protocol’s design. Such an

attacker could spoof the origination address of his requests, causing a large amount of traffic

to be directed to a third party by the server, while requiring little traffic from the attacker.

Memory exhaustion countermeasures include making a protocol stateless until after authen-

tication is complete. TCP’s three-way handshake provides a weak form of authentication, but
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early implementations required a host to maintain information even before the handshake was

complete. This allowed an attacker to use a SYN flood attack to cause many half-open con-

nections, eventually filling a server’s connection state buffer and causing the server to become

unresponsive. With SYN cookies, a server does not need to maintain information about half-

open connections [58; 59]. A SYN cookie encodes a timestamp, minimum segment size, and the

hash of the client IP address, client port number, server IP address, server port number, and

a secret value into the Initial Sequence Number (ISN) included in a SYN/ACK reply. Because

TCP requires that a client’s ACK use the sequence number ISN + 1, the encoded information

allows a server to validate an ACK without having stored any information from the original

SYN.

Puzzles provide a countermeasure to computational DoS attacks [60; 61]. Here a server

requires that a client solve a computational puzzle before the server will perform work for the

client. This causes the client to expend computational work before it can cause a server to

do the same. For example, in Chapter 4 we will describe a puzzle whereby a server calculates

h = hash(n) and provides a client h and n′, where n′ is n with its i rightmost bits replaced

with zeros. The client must solve the puzzle by finding n. It does this by enumerating through

the possible values for the i missing bits, calculating the hash of each candidate for n, and

comparing the result to h. Thus the client must perform O(2i−1) hash operations.

2.2.4 Authentication

Authentication identifies subjects—users, hosts, and other entities—with which a system

interacts. Authentication is fundamental to security protections because it is a prerequisite for
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authorization. Without knowing who a person is, a system cannot determine what he should be

allowed to do. That is, without authentication, every subject must be treated equally. Systems,

of course, must be able to treat subjects differently. After all, it is likely that an administrator

should be allowed to do different things than a secretary. A CEO will have different access

requirements than an accountant.

Each subject has one or more identities, referred to as a principal . Some users assume

a recurring principal, but keep secret their real-world identity; we call these users strangers.

Other users produce a new principal for each request; we call these users anonymous.

Authentication must be strong. It must limit the occurrences of fraud—where someone

fools the system to masquerade as another user—and insult—where a legitimate user is rejected

access [62]. Passwords are a weak form of authentication; their use for network authentication

has been fraught with problems due to brute force attacks, spoofing, keylogging, and network

timing attacks [63; 64; 1]. Cryptographic techniques are much better suited for use on a network,

and local authentication can be strengthened through the use of physical tokens or biometrics.

Network authentication typically is mutual, whereby a client authenticates a server and

the server authenticates the client. Without mutual authentication, a MitM attack is possible.

In this attack, an adversary positions himself so that he intercepts messages between two

parties before rebroadcasting each of them. Using strong, mutual authentication to negotiate

an encrypted channel renders a MitM attack exceedingly improbable.
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2.2.5 Authorization

Once a subject is authenticated, its access to system objects is governed by authorization—

the application of the security policy. Objects include resources like files, network services, and

devices. An object might have an owner , a closely associated subject. Authorization may be

discretionary—defined by an object’s owner—or mandatory—immutable except for by external

controls.

A reference monitor [65] is a key component of classical authorization systems. A reference

monitor implements an authorization predicate that takes as input a security policy and various

information describing a subject, request, and object. Given this input, a reference monitor

outputs either accept or reject. An OS typically will consult its reference monitor before

servicing a system call. If the reference monitor rejects a request, then the OS will return an

error to user space. Otherwise, the OS will continue to process the system call.

2.2.6 Types

We now turn to a general protection that has a broad effect on distributed system in-

tegrity. Type safety prevents untrapped errors—where an error goes unnoticed and computa-

tion continues—and can reduce trapped errors—where an error is detected and computation

stops [66]. Untrapped errors are particularly pernicious since they result in arbitrary behavior;

this arbitrary behavior occurs when a program’s runtime state becomes inconsistent. Deep im-

plementation knowledge and extensive analysis can be required to predict the execution after

an untrapped error. For example, C’s lack of type safety permits untrapped errors such as



28

buffer overflows [67; 68], and the end-to-end-security strata increases the likelihood that these

errors will result in security holes.

Thus programming language designers have long incorporated type safety to reduce the

effort of writing applications. Milner stated “well-typed programs cannot ‘go wrong’” [69].

While surely an exaggeration, strongly checked type systems increase program quality.

Programming languages can be untyped , in which a variable can hold values of any type; or

they can be typed , in which each variable is restricted by a type [66]. Type-safe programming

languages have no untrapped errors. This is ensured either by dynamic checking in untyped

languages (or certain language features) or by static checking a typed program prior to execu-

tion. Go is a typed language, LISP is an untyped language, and assembly is a language that is

both untyped and unsafe.

Specialized types in programming languages are useful for preventing particular errors, and

in general depend on programming language semantics and tightly-coupled code. Examples

include linear types [70] which can ensure at most one reference to each object, and union types

[71] which can allow performing only operations valid for two or more types.

Closely related to type safety is object serialization whereby a programming language ob-

ject is encoded to an external form for storage or transmission. Serialization is necessary in a

distributed system to ensure data passing between components has a consistent form. Mech-

anisms for serialization range from the basic (e.g., htons) to the sophisticated. Care must be

taken when serializing an object containing pointers which might produce shared objects—where

two or more objects each reference a given object—or cyclic objects—where an object contains
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a direct or indirect reference to itself. A standard technique meets these requirements by main-

taining a table containing indices and object references [72]. Each time an object is encoded,

the table is checked to determine if the object had been previously encoded. If it had been, the

corresponding index is encoded instead of the object. A similar process is used while decoding

to recreate object references.

In an implicitly typed encoding, only data is encoded, not its type. This reduces encoding

size and eliminates type field interpretation while decoding. In explicit typing , types are encoded

along with data. Serialization schemes can be either closely coupled to a programming language

or programming-language-agnostic.

Remote Procedure Calls (RPCs) are procedure calls that are executed in another address

space [73]. RPCs build on serialization to provide a natural interface into remote services,

and the abstraction they provide can make programs easier to understand. Some RPC systems

allow communication with remote computers and others—often for performance reasons—allow

communication only within a single computer [74; 75; 76].

Python [77], Java [78], C] [79], and C++’s Boost [80] provide examples of native serializa-

tion facilities. RPC systems in particular benefit from programming-language-specific serial-

ization. The homogeneity of Java’s Remote Method Invocation (RMI) [81] makes it easier to

use than heterogeneous systems since it does not need a programming-language-agnostic In-

terface Description Language (IDL). Programming-language-specific systems can also provide

conveniences such as the ability to pass previously unknown objects such as subtypes to remote



30

methods. This enables polymorphism (in other systems a subtype might be interpreted as its

parent at the distant end).

External Data Representation (XDR) [82], ASN.1, JavaScript Object Notation (JSON)

[83], and Protocol Buffers [84] can serialize objects from any programming language. Google

designed the latter after experience demonstrated settling on one programming language was

infeasible. Open Network Computing (ONC) RPC builds on XDR [85]. The rpcgen utility

generates client stub and server skeleton code from a high-level declaration, and programmers

fill in the rest. CORBA provides an any type and inheritance [86], and identifies actual types

using a type code. CORBA’s type codes are ambiguous [87], and this ambiguity can violate the

type safety of inheritance and any types, particularly in loosely-coupled systems. Thrift [88] is

designed to be particularly flexible. Instead of dictating a single encoding format or transport

protocol, Thrift exports an interface with which to implement them.

2.3 Protected networking

Protected networking builds on the security services we have discussed to provide:

(1) a means to identify remote parties through authentication and

(2) a means to maintain confidentiality, integrity, and availability of the communication chan-

nels between parties.

Our discussion of network authentication covers Kerberos, a symmetric-key-based system that

is commonly used by enterprises, and public-key certificate systems. Following this, we describe

a number of network protocols.
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2.3.1 Kerberos

Kerberos was motivated by the transition from single, time-sharing systems to distributed

networks of workstations. The authors of Kerberos wanted to produce an authentication system

that:

• allowed users and hosts to prove their identity;

• was resistant to eavesdropping and replay attacks; and

• was transparent (now referred to as single sign on), that is, a user presents a password

once and from that point on can authenticate to any service on the network.

Kerberos is an authentication system built around symmetric key cryptography and the

Needham-Schroeder cryptographic protocol [89]. (The Needham-Schroeder protocol was broken

in 1995, but the protocol was fixed in a subsequent revision [23].) At a minimum, a Kerberos

installation is made up of two services: an authentication service and a Ticket Granting Service

(TGS). In addition, there is client software, most commonly in the form of a library that is

linked into client applications. Each subject maintains a secret key that is shared only with the

Kerberos authentication service.

Kerberos defines two constructs that are used for authentication: tickets and authenticators.

Kerberos issues tickets to subjects who use them to prove their identity to end servers; tickets

have a lifetime that allows them to be used repeatedly. (A ticket is valid for a single subject,

server pair.) Subjects use authenticators to prove that they are the entity to whom Kerberos

issued a ticket. Authenticators may be used only once, but subjects may self-generate them.
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We use the following syntax to describe the details:

a Network address of the client workstation

AC An authenticator generated by C

c A client identifier

KS A symmetric key known only to Kerberos and S

KC,S A symmetric key known only to Kerberos, C and S

l Ticket lifetime, chosen by the ticket issuer

M a message

s A server identifier

t A timestamp

TC,S A ticket that identifies C to S

M KC,S
Encrypt message m using symmetric key KC,S

TC,S = s, c, a, l,KC,S KS

Figure 3: A Kerberos ticket that client c may present to server s; note that it is encrypted
with the server’s key, thus it could not have been directly generated by c

Figure 3 and Figure 4 list the contents of a ticket and authenticator, respectively. Figure 5

depicts how Kerberos authenticates a user:

(1) The authentication process starts with a user entering his name at a client workstation.

The client sends this name to the Kerberos authentication server.
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AC = c, a, t
KC,S

Figure 4: A Kerberos authenticator, generated by client c for server s; the server knows this
authenticator comes from client c because only server s, client c, and Kerberos have Ks,c
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Figure 5: Kerberos authentication protocol (based on an existing figure [90])

(2) If the user is valid, the Kerberos authentication server responds with a tuple, encrypted

with the user’s cryptographic key. This tuple includes a session key and ticket for use

with the Kerberos TGS. The ticket arrives encrypted with the TGS’s key. (Thus the user

cannot generate, view, or modify the ticket.)

(3) The client application now prompts the user for his password, hashes this password into

a cryptographic key, and uses this key to attempt to decrypt the response from the

authentication server. The client sends to the TGS the end server to which the user wishes

to authenticate; the encrypted ticket from the authentication server; and an authenticator,

encrypted with the session key from the authentication server.
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(4) The TGS decrypts the ticket and confirms s, c, a, and l. If these fields are valid, the

TGS extracts KC,TGS from the ticket and uses it to decrypt the authenticator. If this

authenticator is also valid, then the TGS responds to the client with another ticket. This

ticket is encrypted with the end server’s key KS , contains the session key KC,S , and is

for use with the end server.

(5) Finally, the client sends the ticket and an authenticator to the end server.

In this protocol, Kerberos must only bother the user for his password once. Successive connec-

tions to services can be negotiated without the user’s input (i.e., single sign on). Eventually, the

ticket granting ticket received at step two will expire, and only then will the user be required

to enter his password again.

Kerberos is built upon symmetric instead of public-key key cryptography. This has two

negative effects: First, a compromise of the Kerberos service itself is catastrophic. From that

point on, an attacker can masquerade as any user because he has all of the subjects’ secret keys.

Second, Kerberos does not scale beyond the enterprise because all parties must trust a single

Kerberos installation. This is not sufficient for the Internet, where such a universally trusted

third party does not exist.

Another problem exists in many client implementations. In such applications, cryptographic

algorithms and keys often share the same address space as application logic. This increases the

risk that a key will be compromised, and it means that an improperly written, improperly

configured, or compromised application might not perform authentication properly. That is,

most Kerberos implementations give rise to application-based subversion of authentication.



35

2.3.2 Certificates

Certificates are digitally signed statements [42]. The properties of certificates make them

useful for solving identity problems in distributed systems. A system that produces a certificate

represents the signer , and the relying party verifies and possibly acts on a certificate. A primary

goal of such a system is that the signature scheme is unforgeable, meaning only user U can create

U ’s signature on message m, and universally verifiable, meaning any user can verify that the

signature on m is valid [91]. Together, these provide the property of non-repudiation of origin

[33]. Thus certificates provide much more precise authentication than systems such as Kerberos.

With Kerberos, a system identifies a remote user, but can go on to claim the user made a request

that he did not. In contrast, certificate-based systems can require an unforgeable record of every

request.

We discussed digital signatures as a cryptographic primitive in §2.2.1. However, ensuring

the integrity of a certificate system takes more than cryptography. To provide non-repudiation,

a system must:

(1) provide a correspondence between users and their private cryptographic keys,

(2) ensure adequate isolation of private cryptographic keys,

(3) guarantee that the system signs only what the user intends, and

(4) guarantee that the signer and relying party share a single meaning for a given certificate.

An identity certificate is a signed statement that vouches for a subject’s identity, addressing

(1). For example, the certificates used by web browsers are signed statements that map public
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keys to servers. To authenticate using certificates, a system first requests an identity certificate

from the party making a request, and then determines if the direct signer of the identity

certificate is trusted. If this is not the case, then the system obtains an identity certificate for

the signer, and repeats this process until it encounters a signer it trusts (or it gives up and

rejects the original request). We refer to this final signer as a Trusted Third Party (TTP).

The path from the original signer to the TTP is a certification path. Once a system knows

the identity associated with a key pair, it can accept or reject any type of certificate generated

using that key pair based on its corresponding identity.

A difficult question is: who makes an appropriate TTP? It is notable that when two parties

perform a mutual authentication, they need not rely on the same TTP. This is a second

key advantage of certificate systems over systems like Kerberos, and it means they have the

potential to scale to the entire Internet. In practice, web browsers use X.509 certificates and

often designate universally trusted parties, but researchers have recently noted the insufficiency

of this technique [92; 93]. A strong certificate system requires that relying parties choose their

TTPs. X.509 added a graph-based trust model to its traditional hierarchical model [94], but

its design imposes a high performance overhead. SDSI [95] also provides a strong trust model,

but likewise does not perform well at Internet scale. Another alternative is the web of trust

used by PGP[96].

Many systems have tried to isolate private keys in user space in an attempt to address

(2). For example, Secure Shell (SSH) [97] attempts to isolate private keys by protecting them

with an optional password and requiring restrictive file permission settings. In §2.4.3 we will
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describe Plan 9 [98], which improves on the approach of SSH and makes it system-wide. But

such user-space isolation is often compromised by malicious software [99] because malicious

software runs with the user’s privileges and passwords are optional or the password choice is

at the user’s discretion. It is difficult to close these potential security holes when individual

applications implement disparate protection systems.

External smart cards are often used to provide stronger isolation. A typical smart card is a

physical device that contains a cryptographic key pair k; a cryptographic processor that, given

some input m, can sign m using k to produce a signed output s; and an interface that allows

writing m and reading s (without giving access to k). Sometimes, smart cards also provide a

trusted input or output channel; this can help address (3), although it may significantly increase

production cost.

Beyond isolating keys, a system must ensure that they are used only as a user intends. A

system does this by prompting the user or forcing him to enter a PIN to unlock his smart

card. But current software layering is very complex, making this difficult. It is possible to

fool common OSs and web browsers into either revealing a secret key or authenticating using

client-side SSL without notifying the user [100]. Even if the user is warned that a signature is

about to take place, users will often ignore security warnings [101].

When user approval controls can be bypassed, isolation attacks can exist even on systems

that use smart cards. In keylogging/PIN collection, an attacker collects user input, possibly

including a smart card PIN, after installing malicious hardware or software. This can result in

fraudulent authentication, whereby a malicious program authenticates to a computing resource
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using a user’s credentials; fraudulent signatures, whereby a program performs a digital signa-

ture without a user’s approval; and remote smart card control, whereby a program makes the

smart card’s services available to third parties over a network [102]. In keyjacking , an attacker

undermines the notification mechanism of a certificate system, allowing certificate operations

to occur without notifying the legitimate user [100]. This violates the requirement that a user’s

private key is only used with his approval.

Even assuming a trusted means of reviewing material, it may be difficult to know whether

to sign it. The semantic-level difference is the difference in cognitive understanding of the

meaning of a digital document between the signer and the relying party. The syntax-level

difference refers to the representation of data at the syntax level, between two points within

a system [103]. Many attacks may exploit a semantic difference. For example, a replay attack

exploits a certificate whose meaning is insufficiently clear; a signed copy of a vague statement is

dangerous because it lacks context [104]. A Daĺı attack exploits a polymorphic file; a single file

displays different contents depending on what application is used to view it [105]. For example,

a single file may contain data which is valid both as PDF and TIFF. Selecting a program

capable of displaying one format or the other will determine which of the possibly unrelated

representations gets displayed. Furthermore, it is possible to digitally sign a document that

references external material. If this is done without care, one can alter the external material

without invalidating the digital signature [106].
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2.3.3 Protected network protocols

Protected network protocols should provide header and data integrity, data confidentiality,

and DoS resistance without burdening application developers. Furthermore, protected network

protocols must perform well, that is, their protections must not impose an unacceptable per-

formance penalty relative to unprotected protocols. Here we discuss several existing protocols

and describe why they do not satisfy these requirements.

TLS (previously Secure Socket Layer) provides cryptographic network protections above

the transport layer [107]. TLS is widely deployed as the primary network security layer in

web browsers. A typical use of TLS uses ephemeral DH to produce a session key, RSA-based

certificates to provide authentication, AES to provide channel encryption, and Secure Hash

Algorithm (SHA-1) hashing. Collectively, these represent an example of a TLS cipher suite.

We depict establishing a new TLS connection using a client-side certificate on top of TCP/IP

in Figure 6. A full connection begins with a three-way TCP handshake, followed by the TLS

messages described below:

(1) The SSL connection begins with a ClientHello message. This allows the client and server

to negotiate a protocol version number and cipher suite.

(2) In its ServerHello response, the server also provides a session ID, provides a certificate,

and requests a client certificate.

(3) The client responds with its certificate, a cipher-specific value, a certificate authenticator,

and an indication that it is switching to authenticated and encrypted transmission.
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(4) The server responds, also indicating it is transitioning to protected communication.

Including the TCP/IP handshake, but not a DNS lookup, this process takes three round trips

to complete.

Figure 7 depicts an abbreviated TLS connection, made possible by the session ID. A client

may include a session ID in its ClientHello to indicate that the client wants to resume the

parameters previously negotiated (1). If the server agrees (2), this reduces the number of round

trips necessary to establish the TLS connection to two because application data can accompany

the Finish message (3). This shortcut also reduces the number of expensive public key operations

required when using RSA-based certificates.

TLS is most often implemented as a user space library, and this leaves its authentication,

integrity, and confidentiality protections susceptible to application-based subversion. Many

applications across the Internet still omit the use of TLS or use a weak cipher suite. One

survey found that 77% of websites using HTML’s password field are exclusively served by

cleartext HTTP [108]. Furthermore, many TLS libraries have confusing APIs with insecure

defaults, and even well-meaning developers routinely misuse them [11; 12]. To authenticate

their peer, an application must: validate a certificate path, check the hostname present in the

server’s certificate, and check that the certificate has not been revoked. Often these checks

are performed incorrectly. Developers have also been known to deactivate certificate checking

during testing and then forget to turn it back on prior to release.

Beyond the difficulty of using TLS correctly in every application, TLS incurs a latency

overhead of at least one round trip, in addition to the latency of TCP/IP. Datagram Transport
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Client Server

UDP DNS req.

UDP DNS resp.

SYN

SYN ACK

(ACK) ClientHello

Server Hello/Session ID, Cert., Cert. Reques
t, Done

Cert., Client Key Exch., Cert. Verify., Change Cipher Spec., Finish

Change Cipher Spec., Finish

Application data

1

2

3

4

Figure 6: A full TLS connection establishment requires three round trips before transmitting
application data; the dotted round trip is only necessary if the host’s IP address is not yet
known

Layer Security (DTLS) [109] provides TLS protections on top of UDP, but it shares the latency

of TLS’ cryptographic handshake (and, of course, is not stream-oriented). There have been

many attempts to reduce this latency. Recently, False Start, Snap Start, and certificate pre-

fetching have accelerated establishing a TLS session [110; 111; 112].

Latency improvements have also been attempted within the layers below TLS. TCP Fast

Open (TFO) [113] allows clients to request a TFO cookie they can use to forgo the three-

way handshake on future connections. To benefit from TFO, a server application must be

idempotent: TFO does not detect duplicate SYN segments, so the application data included in
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Client Server

SYN

SYN ACK

(ACK) ClientHello/Session ID

ServerHello, Change Cipher Spec., Finish

Change Cipher Spec., Finish, Application data

1

2

3

Figure 7: With an abbreviated TLS connection establishment, application data may be sent
after two round trips

such segments must not cause the server to become inconsistent. Furthermore, since any client

may request a TFO cookie, a client may spoof its sending IP address and mount a DoS attack

against a server by requesting cookies; under this condition, the server must again require a

three-way handshake.

Tcpcrypt [19] investigated ubiquitous encryption, but it maintains backwards compatibility

with TCP/IP. Tcpcrypt provides hooks that applications may use to provide authentication

services and determine whether a channel is encrypted. Our approach is different; we are

interested in a clean-slate design that centralizes authentication and encryption services in an

OS’s system calls to ease assurance.

Internet Protocol Security (IPsec) provides very broad confidentiality and integrity protec-

tions because it is generally implemented in the OS kernel. For example, IPsec can be configured

such that all communication between node A and node B is protected. This universality sim-

plifies assurance; in fact the NSA employs a variant of IPsec in its High Assurance Internet
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Protocol Encryptor (HAIPE) interoperability specification [114]. IPsec’s major shortcoming

is that its protections stop at the host; it focuses on network encryption and host authenti-

cation/authorization. For example, IPsec does not authenticate or restrict users across the

network. It is certain that recent, high-profile attacks on US Government networks at some

point passed through IPsec-protected networks [7; 6].

Stream Control Transport Protocol (SCTP) is a transport-layer protocol that provides re-

liable delivery and congestion control [115]. SCTP differs from TCP in that it can bundle

messages from multiple applications (i.e., chunks) into a single packet. Structured Stream

Transport (SST) [116] allows applications to associate lightweight network streams with an

existing stream, reducing the number of three-way handshakes incurred by applications and

providing semantics useful for applications that use both data and control connections.

2.4 Systems

Here we discuss existing systems that attempt to apply the security services and protocols

we have previously described to satisfy strength and assurance requirements. As we discuss

each, we will point out their deficiencies, eventually describing how Ethos improves on them in

Chapters 4–9.

2.4.1 Multics

Multics was an early OS that investigated how to develop more secure operating systems

[117]. Multics was designed as a time-sharing system and “provides computation and informa-

tion storage service to a community of users” [40]. As such, it did not investigate to a large

extent the security problems that arise from computer networks. Despite this, the contributions
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of Multics to host security are large, in particular its contribution to hardware-based memory

paging and segmentation; its hardware-based separation of kernel space from user space; its

access controls; its extensive use of a compiled language, PL/1; and its five design principles

[118]. The Multics design principles are:

(1) Grant permissions conservatively, that is, assume access is not permitted until it is

granted.

(2) Subject every object access to authorization controls (i.e., complete mediation).

(3) In a broad sense, security should not require the system’s design to remain secret (similar

to Kerckhoffs’ principle).

(4) Every program and user should be granted the least privilege necessary to complete their

authorized task.

(5) Provide a natural, easy to use interface so that users are not motivated to bypass the

system’s controls.

Multics provides a hierarchical filesystem that is governed by access control lists. Processes

serve as subjects and can access objects in the storage system. Each subject has associated

with it a value called a principal identifier, which corresponds to the user on whose behalf the

process runs. Each object in the storage system has associated with it three modes, read, write,

and execute. For each mode, there exists a list of principal identifiers that may access the object

using the mode.
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Multics principal identifiers have structure, they are in fact multicomponent principal iden-

tifiers made up of three components:

(1) an individual user name,

(2) a group called a project, and

(3) a group called a compartment.

Project administrators determine project membership, but compartments are permissive: users

may select any compartment to work within. Users choose which (permitted) project and

compartment they will assume when they login to Multics. Multics specifies the user Bob,

working in projectx and compartmenty as:

bob.projectx.compartmenty.

An access control could reference the principal identifier above, or it could use wildcards.

For example, the following specification grants read and write access to any user that has been

granted membership in projectx:

∗.projectx.∗ rw.

Multics access controls are discretionary. The owner of an object is free to set its access

controls. Saltzer notes that this is insufficient for some applications; for example, Multics is

unable to restrict a student so that he cannot set the permissions on his work so as to share

it with other students [117]. This is the general problem with discretionary authorization:

compliance with a security policy requires active cooperation from all system users.
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2.4.2 Unix

Ken Thompson, a Multics veteran, went on to develop Unix with Dennis Ritchie et al.

[119]. Many of the lessons learned while developing Multics were applied to Unix, although

key differences did arise. Similarities include that Unix was a time-sharing system; provided

hardware memory and kernel protections; and was implemented primarily in a compiled lan-

guage, C. A key difference is that Unix filesystem objects are not regulated by access control

lists. Instead, each object has a user and group associated with it, along with permissions for

the object’s user, the object’s group, and everyone else. (Modern implementations have added

access control lists to this basic mechanism, in general a trend that has increased the complex-

ity of Unix systems.) Two key contributions of Unix were the pipe—including its integration

into the Unix shells—and the notion that many system objects were accessed using a single

file-based API.

Like Multics, Unix authorization traditionally has been discretionary. Throughout the

1990’s several Unix vendors added MAC to Unix to produce compartmented mode workstations

[120; 121]. Later, the NSA published SELinux, a mandatory access control system for Linux

(a Unix-like OS) [122] that focused on enforcing an authorization policy on a single machine.

SELinux assigns each process a role, name, and domain. Objects—such as files, sockets, and

pipes—have a name, role, and type. SELinux consults a configurable policy to govern how

processes may access objects. SELinux is able to restrict the ports, IP addresses, and network

interfaces a given process may interact with, but this level of control is insufficient for distributed

systems.
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1 l i s t e n F d ← s o c k e t ( domain , type , p r o t o c o l )
2 b i n d ( l i s t e n F d , a d d r e s s )
3 l i s t e n ( l i s t e n F d )
4 do f o r e v e r
5 netFd ← a c c e p t ( l i s t e n F d )
6 // Read and w r i t e s o c k e t netFd .

(a) A Berkeley sockets server

7 netFd ← s o c k e t ( domain , type , p r o t o c o l )
8 c o n n e c t ( sock , a d d r e s s )
9 // Read and w r i t e s o c k e t netFd .

(b) A Berkeley sockets client

Figure 8: A Berkeley sockets application in pseudo code

As a time-sharing system, Unix did not originally emphasize networking as we know it

today. Unix-to-Unix Copy (UUCP) provided networking support for early Unix systems, but

in a way more reminiscent of point-to-point Plain Old Telephone Service (POTS) serial links.

Later, BSD added Berkeley sockets to Unix [123], and this interface was eventually adopted by

POSIX. The Berkeley sockets API includes five core system calls: socket, connect, bind, listen,

and accept.

Figure 8 presents an example Berkeley sockets application. The socket call specifies the

network and transport protocols that will be used for a connection. Thus the semantics of

Berkeley sockets can include network reliability (such as with TCP/IP). What is not included

is any notion of network encryption or authentication. Therefore, a program that receives a

network socket file descriptor from accept does not know the remote principal associated with

the connection. Likewise, connect does not authenticate the server an application connects
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to. Furthermore, the specification of the application-layer protocol is absent from the Berkeley

sockets API, so handling ill-formed requests is left to application code.

Labeled IPsec [124] combines IPsec and SELinux [122] to provide more comprehensive net-

work protections. Using a domain-wide authorization policy, the system:

(1) associates SELinux labels with IPsec security associations,

(2) limits a process’ security associations (connections) using a kernel authorization policy,

and

(3) employs a modified inetd that executes worker processes in a security domain correspond-

ing to the label associated with an incoming request.

In this manner, labeled IPsec can solve many of the authentication deficiencies in plain IPsec.

However, labeled IPsec depends on a verified TCB and enforcement policy, even though it builds

upon the Linux kernel, SELinux, and IPsec, each of which are very complex. Furthermore, IPsec

security association granularity limits the granularity of controls in labeled IPsec.

An application’s use of Pluggable Authentication Modules (PAM) and the setuid system

call routinely provides authentication on modern Unix systems. PAM provides configurable

authentication methods (e.g., Kerberos, password, smart card, etc.) using a variety of back end

databases [125]. Because PAM modules typically execute in the application’s address space,

a compromised application may leak user secrets or bypass authentication all together. The

setuid system call changes a process’ user credentials, but the rules for using setuid are complex

[126]. Attacks can inflict substantial damage, as setuid often requires the process to run as root



49

before transitioning to the target user. In addition, cryptographic algorithms are hard to get

right, and in the Unix model, updates are inconvenient. For example, if a Kerberos library

needed to be updated, it would require all such applications to be relinked or at least restarted.

These are the issues the Plan 9 team attempted to address in Security in Plan 9 [98].

2.4.3 Plan 9

Plan 9 is a research operating system that started in the 1980s at Bell Labs. Many of the

Plan 9 researchers were veterans of Unix. They felt that Unix was a good design, although

it had lost some of its architectural purity after it accreted networking and graphics. Where

Unix was for time-sharing systems, Plan 9 was going to be for the new, networked worksta-

tions. Plan 9’s authentication innovations took place during its fourth edition. These include

factotum, a capability-based privilege transition mechanism, the secstore, and a kernel-based

TLS implementation.

Factotum is a user-space dæmon and is responsible for authentication on Plan 9. The princi-

pal purpose of factotum is to move authentication code and cryptographic keys into a separate

address space from an application. (The authors acknowledge that SSH performed this separa-

tion first [127], but factotum is much more general.) Factotum acts as an authentication proxy.

Consider a POP email server that must implement the APOP authentication protocol. On

Plan 9, such an email server would receive requests from the network and process them. In the

case of authentication requests, the email server forwards the request to factotum. Factotum

then provides the email server with the response it should pass to the client. Never in this pro-

cess are keys shared with the email server. Factotum provides support for many authentication



50

protocols. Factotum addresses the leaking of keys through debugging interfaces, swap space

(Plan 9 never swaps the factotum process to disk), or willing disclosure.

Plan 9 avoids the requirement for special privileges by providing a different mechanism than

Unix’s setuid. Plan 9 provides two special devices, /dev/caphash and /dev/capuse. Factotum

is responsible for authorizing user transitions following a successful authentication; it writes

to /dev/caphash to signal to the Plan 9 kernel that a process should be allowed to transition.

(Factotum is the only program that may write to /dev/caphash.) Consider a program p that

wishes to transition from user u1 to user u2:

(1) After authenticating u2, factotum generates a random value r and writes the string

hmac(u1@u2, r) to /dev/caphash.

(2) factotum then provides p with r.

(3) p writes u1@u2@r to /dev/capuse.

(4) The kernel then calculates hmac(u1@u2, r), which should match the value written by

factotum. If it does, then the kernel transitions p to run as u2.

This process by which Plan 9 performs authentication is demonstrated in detail in Figure 9.

The figure shows the messages sent as time progresses from the top to the bottom of the y

axis. There are four programs involved, labeled across the top: FactotumC ; Client, an email

client; Server, a POP server; and FactotumS . As indicated, the factotums act as authentica-

tion proxies, telling the client and server what authentication messages they should transmit.

(Non-authentication-related POP messages are not depicted.) Towards the end of the process,
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FactotumS and Server write to /dev/caphash and /dev/capuse, respectively. Upon completion,

the kernel transitions the server from running as user n to user u.

Plan 9’s secstore holds all of a user’s keys, allowing a sort of single sign on. When a user

logs in, he authenticates to factotum once with his password. Factotum connects to the user’s

secstore, provides its authentication credentials, and fetches the user’s key file. From this point

on, factotum can authenticate as the user to various services.

Plan 9 also implements a portion of the TLS protocol in kernel space. (The negotiation

of the shared TLS secret is still performed in user space using factotum.) Plan 9’s tlsClient

procedure takes as arguments a network file descriptor and TLS connection data structure,

negotiates a TLS connection, and associates this TLS connection with the kernel’s TLS de-

vice. TlsClient then sets the session ID and X.509 certificate fields in the TLS connection data

structure and returns an encrypted networking file descriptor to the application. At this point,

the application can confirm the server’s X.509 certificate and read/write encrypted messages

merely by reading/writing the encrypted networking file descriptor. This continues the theme

of isolating long-term cryptographic secrets from applications. On a Unix system, libraries are

often used to implement TLS, and this generally is done in such a way that adds cryptographic

keys to an application’s address space. Moving the TLS implementation to the kernel solves

this problem.

Plan 9 provides a logical improvement to Unix and provides techniques that could be

used to increase the robustness of Kerberos implementations. However, Plan 9 applications

must make explicit use of factotum. Furthermore, administrators must take care to install only
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FactotumC Client Server FactotumS4
(Running as user n, then u.)

/dev/capuse /dev/caphash

start proto=apop role=server

ok

read

ok +OK POP3 challenge

+OK POP3 challenge

start proto=apop role= . . .
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write +OK POP3 challenge
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ok APOP u response

APOP u response
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ok +OK welcome
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Figure 9: Plan 9 authentication: Using factotum to authenticate for an email service

these applications, and to configure them to use strong authentication and encryption. Another

source of problems on Plan 9 is that TLS applications must themselves validate certificate paths,

check certificate identities, and check that the certificate has not been revoked. As we discussed

in 2.3.3, this has since been shown to be a routine source of programmer error. By forgoing

backwards compatibility (in the sense of removing support for weak network and authentication

protocols), an OS could subsume the work of developing, configuring, and auditing applications
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to ensure they use Plan 9-like protections. Such a system could reduce application-based

subversion, which remains in Plan 9.

2.4.4 Taos and Singularity

Taos is an OS designed at Digital Equipment Corporation to build distributed systems

with strong authentication [128]. Taos implements distributed security as part of the OS, and

makes no distinction between local and remote principals. IPC takes place over point-to-point

channels, and each channel endpoint has a principal associated with it. A Taos process may

initiate a channel to make a request on behalf of one of a set of allowed principals. The recipient

can identify the requester using GetPrin and check whether the request is permitted using Check.

Taos provides the notion of compound principals. Compound principals can specify many

constructs, such as simple principals (e.g., user Alice says), principals in roles (e.g., Alice

acting as Administrator says), and principals quoting principals (e.g., Bob says Alice says).

Such constructs empower sophisticated authorization; for example, a database might want to

allow requests of the form Webserver says Alice says, while denying requests directly form

Alice. Check’s support for compound principals allows this.

Microsoft designed Singularity to demonstrate a reliable system that ran the OS kernel,

device drivers, and applications within a type-safe Common Language Runtime (CLR) virtual

machine. Singularity simplifies Taos’ authentication model somewhat [129]; its processes have a

single, immutable principal associated with them. Thus it is likely that applications will need to

spawn processes for different purposes (i.e., least privilege), but Singularity’s Software Isolated

Processs (SIPs) lower this cost. Because isolation between SIPs is a result of programming
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language type safety, all of Singularity runs in the same address space. Creating and managing

SIPs is much more efficient than with traditional processes.

2.4.5 HiStar

HiStar provides a simplified, low-level interface; implements mandatory information-flow

constraints; and provides a Unix layer for compatibility [16]. DStar builds on HiStar to provide

information flow across hosts on a network [130]. HiStar’s flow controls contain the effect of

a compromised application, serving as a countermeasure to one of the facets of application-

based subversion. Even if an application is compromised, it cannot bypass the flow controls

that HiStar imposes on it. However, other problems remain. An application that operates

within its information-flow constraints could easily be programmed or misconfigured so that

protections are missing. For example, many of the problems that arise from using TLS libraries

on traditional Unix systems, still remain with HiStar’s Unix layer.

2.4.6 Application architectures

The Multics principle of least privilege remains in several modern application architectures.

These include manual privilege separation [127], automatic privilege separation partitioning

[131], and implementing a user-space object manager that applies a system-wide authorization

policy within an application (e.g., with SELinux) [132]. Such techniques isolate sensitive code

and unify authorization policy.

Least-privilege architectures commonly require a software component we call a distributor.

Distributors invoke a carefully-privileged process to service a request. Many existing systems

use distributors, including the Internet service dæmon (inetd), the OKWS web server’s okd, and
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the qmail mail server’s qmail-send/qmail-lspawn [133; 134]. Breaking up server applications for

least privilege can stress an OS’s isolation mechanisms, especially when it requires that many

processes must run as many users. For example, such a server on Unix would have to execute

a process per user. For this reason, OKWS on Unix provides only per-service (not per-user)

isolation. Efstathopoulos et al. extended OKWS to run on the Asbestos OS and provide per-

user isolation because Asbestos provides light-weight user isolation. Singularity’s light-weight

SIPs likewise benefit least-privilege architectures. Qmail demonstrates that per-user isolation

can perform well on systems with traditional processes such as Unix.
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INTRODUCTION TO ETHOS’ NETWORK API

Chapters 4–9 will describe in detail how Ethos provides network encryption, DoS protec-

tions, authentication, authorization, and type safety in a way that minimizes application-based

subversion of these protections. Here we briefly introduce Ethos’ network API to facilitate those

discussions. As an example application, we present a line-oriented remote shell utility, resh. The

function of resh is similar to SSH; a user can use resh to log into a remote Ethos computer and

interact with its shell remotely. (Resh presently is limited to line-oriented interaction because

it does not implement curses-like screen control [135].)

Table II summarizes the system calls that contribute to Ethos’ robust networking, and

Figure 10 shows their use in resh. Like POSIX, many Ethos system calls are file-descriptor-

based, but Ethos’ system calls provide more inherent protections [136].

Figure 10a shows the resh client. The client uses Ethos’ ipc system call to make a connection

to a resh server (example.com). This is the analogue of connect on POSIX, and returns a network

file descriptor. It differs in that ipc’s semantics specify that Ethos will:

(1) encrypt the connection (P2, Chapter 4),

(2) apply certain DoS protections (P5, Chapter 4),

(3) authenticate the resh server (P1, Chapter 5),

(4) only permit connections to authorized servers (P6, Chapter 8), and

56



57

(5) enforce an application-layer protocol (resh, in this case) on successive reads and writes

(P3, Chapter 6).

Figures 10b and 10c show the server, which is split into two processes to satisfy the Multics

principle of least privilege. Indeed, the authorization policy associated with resh requires such

an architecture. The distributor process, reshDistributor, has the minimum privileges necessary

to call advertise (the analogue of listen) and import (the analogue of accept) to receive a net-

work connection from the client, and then to pass this connection to a per-user process. The

advertise/import system calls are different than listen/accept because Ethos will:

(1) encrypt the connection (P2, Chapter 4),

(2) apply certain DoS protections (P5, Chapter 4),

(3) authenticate the remote user and provide the calling application with the user’s name

(P1, Chapter 5),

(4) only permit connections from authorized remote users (P6, Chapter 8), and

(5) enforce an application-layer protocol (resh, in this case) on successive reads and writes

(P3, Chapter 6).

The distributor itself may not read or write the imported file descriptor. Instead, the

distributor invokes reshVP, a per-user process, through the use of the fdSend system call. This

call starts a new process, running as the specified user, and provides it with the network file

descriptor. In the case of resh, the user provided to the fdSend call must match the remote

client user. This symmetry between the per-user server and remote client user means that
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Ethos can naturally restrict each per-user process. We describe fdSend in detail in Chapter 5

and authorization in Chapter 8.

What should be striking in this example is the lack of encryption, authentication, and au-

thorization calls in the application. Ethos centralizes such protections in the OS and therefore

makes them compulsory. This means that an application cannot avoid them, whether by pro-

grammer omission, misconfiguration, or application compromise. Indeed, Ethos authenticates

all network requests, and a remote client user may not interact with server application code at

all unless authorized by Ethos. Furthermore, Ethos submits each network request to an RPC

type checker, so an Ethos application never receives ill-formed application-layer data from the

network. Thus applications only receive network requests that are authorized and well-formed.

Moving protections into the OS gives rise to another advantage: Ethos carefully isolates

secret cryptographic keys within its kernel, never releasing them to applications (P4). Instead,

applications indirectly make use of keys through the use of system calls, including authenticate,

sign, and the network system calls. On Ethos, application-based subversion cannot directly leak

secret keys.

Isolating keys in the kernel also means that Ethos can enforce the use of particular cryp-

tographic implementations for its protections. For example, there is no need to inspect each

application to ensure the use of side-channel-resistant cryptographic implementations. Further-

more, Ethos can zero private keys after use in many instances to reduce the effectiveness of a

cold boot attack; unlike many systems, Ethos’ isolation of private keys in kernel space means
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1 f u n c reshExecCommandReply ( e ∗ Encoder , r e s p o n s e s t r i n g )
2 p r i n t ( r e s p o n s e )

4 // Main .
5 e , d ← r e s h . I p c (” r e s h ” , ” example . com”)
6 do f o r e v e r
7 command ← readCommand ( )
8 e . ReshExecCommand ( command )
9 d . HandleResh ( e )

(a) Client resh connects, issues requests, and receives responses

10 l i s t e n F d ← a d v e r t i s e (” r e s h ”)
11 do f o r e v e r
12 netFd , u s e r ← i m p o r t ( l i s t e n F d )
13 fdSend ( [ netFd ] , use r , ” reshVP ”)

(b) Server reshDistributor sends connections to reshVP

14 f u n c processCommand ( command )
15 // Not shown : p ipe , f o r k , e x e c u t e command , and so on .

17 f u n c reshExecCommand ( e ∗ Encoder , command [ ] s t r i n g )
18 i f command = ” e x i t ”
19 e x i t ( )
20 r e s p o n s e ← processCommand ( command )
21 e . ReshExecCommandReply ( r e s p o n s e )

23 // Main .
24 f d ← f d R e c e i v e ( )
25 e ← etnEthos . NewWriter ( f d )
26 d ← etnEthos . NewReader ( f d )
27 do f o r e v e r
28 d . HandleResh ( e )

(c) Per-user reshVP services shell requests

Figure 10: The Ethos remote shell application resh in pseudo code

that such sensitive memory locations are known by the kernel (i.e., not lost due to the semantic

gap between the kernel and an application).
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TABLE II: The system calls that contribute to Ethos’ robust networking

Ethos call Analogue Ch. Key Ethos semantics

Process Processes have an immutable user

fork fork 5

exec exec 5

exit exit 5

Networking

advertise listen 5, 8 Services are named by strings, not integer ports

Each service has a corresponding filesystem node

import accept 5, 8 Ethos encrypts all networking

Ethos applies certain DoS protections

Ethos cryptographically authenticates the remote user

Ethos permits only connections from authorized users

Ethos isolates cryptographic keys from applications

ipc connect 5, 8 Ethos encrypts all networking

Ethos applies certain DoS protections

Ethos cryptographically authenticates the server

Ethos permits only connections to authorized servers

Ethos isolates cryptographic keys from applications

Authentication

authenticate n/a 5 Ethos isolates passwords from applications

Does not require special privileges

fdSend sendmsg 5, 8 Invokes a virtual process, run as the specified user

fdReceive recvmsg 5, 8

I/O

read read 5, 6, 8 Subjected to Ethos’ type checker

write write 5, 6, 8

peek n/a 5, 6, 8

Miscellaneous

createDirectory mkdir 6 Directories bear labels and types which apply to files



CHAPTER 4

MINIMAL LATENCY TUNNELING

Our goal with Ethos is to protect all networking against eavesdropping, modification, and,

to the extent possible, DoS. To achieve this goal, Ethos networking must identify users and

servers using strong authentication, ensure header and data integrity, provide DoS protections,

provide confidentiality, and disrupt traffic-flow analysis. In addition, the protocol must perform

well and minimally burden application programmers and administrators. These needs are not

met by existing protocols.

We already described how hardware and software improvements have eliminated historical

cryptographic performance bottlenecks, but one performance parameter has a fundamental

limitation—network latency [137]. Latency is critical for users [138]. For example, Google found

that a 500ms latency increase resulted in a 25% dropoff in page searches, and older studies have

shown that user experience degrades when interfaces operate with latencies as small as 100ms

[139]. We describe here MinimaLT, a network protocol which delivers protected data on the

first packet of a typical client-server communication, provides substantial protections, and is

extraordinarily simple to configure and use. MinimaLT is Ethos’ native network protocol.

Particularly challenging has been to provide PFS at low latency. Traditionally, using DH

to achieve PFS requires a round trip before sending any sensitive data. MinimaLT eliminates

this roundtrip, instead receiving the server’s ephemeral key during a directory service lookup

(§4.1.3.1). To establish connection liveness—necessary only if the connection is inactive and the

61
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server is running out of memory—we invert the normal mandatory start-of-connection hand-

shake and replace it with an only-when-needed server-originated puzzle handshake (§4.1.3.4).

A second challenge is to make connections portable across IP addresses to better support

mobile computing. MinimaLT allows you to start a connection from home, travel to work, and

continue to use that connection. This avoids application recovery overhead and lost work for

operations which would otherwise be interrupted by a move. MinimaLT IP mobility does not

require intermediary hosts or redirects, allowing it to integrate cleanly into protocol processing

(§4.1.3.3). To provide better privacy, MinimaLT blinds third parties to IP-address changes,

preventing them from linking a connection across different IP addresses.

Other challenges include DoS, authentication, and authorization. MinimaLT dynamically

increases the ratio of client (i.e., attacker) to server resources needed for a successful DoS attack,

deploying a variety defenses to maintain proportional resource usage between a client and server

(§4.2.3). We also designed MinimaLT to integrate into systems with strong authentication

and authorization, and its authentication framework supports identified users, strangers, and

anonymous users (§4.1.1.1).

To meet these challenges, we have applied Ethos’ clean-slate strategy to design MinimaLT,

starting from User Datagram Protocol (UDP), and intentionally crossing multiple network

layers. This approach has two substantial benefits. First, security problems often occur in

the seams between layers. For example, TLS is unable to protect against attacks on TCP/IP

headers due to its layering: RST and sequence number attacks interrupt TLS connections in
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such a way that is difficult to correct or even detect [140; 141; 142]. Second, multi-layer design

enables MinimaLT to achieve higher performance.

During our design process, we found an unexpected synergy between speed and security.

The Internet uses higher-latency protocols because, historically, low-latency, stream-oriented

protocols such as T/TCP have allowed such severe attacks [143] as to make them undeployable.

It turns out that providing strong authentication elsewhere in the protocol stops all such attacks

without adding latency. Eliminating roundtrips makes MinimaLT faster than cleartext TCP/IP

at establishing connections.

In short, MinimaLT provides the features of TCP/IP (reliability, flow control, and conges-

tion control), and adds in encryption, authentication, clean IP mobility, and DoS protections,

all while preserving PFS and reducing latency costs. The design of MinimaLT provides encryp-

tion and authentication with PFS while allowing a client to include data in the first packet sent

to a server (often forgoing pre-transmission round trips entirely). Table III compares several of

the network protocols we introduced in Chapter 2 to MinimaLT. In the rest of this chapter,

we describe MinimaLT and its implementation.

4.1 Design

4.1.1 Overview

We begin with a high-level introduction of the MinimaLT protocol design. We co-designed

MinimaLT along with Ethos, and MinimaLT serves as Ethos’ native networking protocol.

Co-design ensures that the MinimaLT protocol integrates well with Ethos authentication, au-

thorization, and naming. MinimaLT identifies hosts using public-key cryptography, multiplexes
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TABLE III: Summary of network protocols

TCP/IP

TCP
Fast

Open

SST
IP

sec
Labele

d
IP

sec

TLS
False

Sta
rt

Snap
Sta

rt

Tcp
cry

pt

M
inim

aLT

Encryption (P2) X X X X X X X X

PFS X X X X X X X

User authentication (P1) X X X X X X

Protection of sequence numbers X X X

Robust DoS protections (P5) X

IP-address mobility with protections
against linking

X

Only strong cryptography supported
(P2)

X

Round trips before client sends data∗ 2 2 2 ≥4 ≥4 4 3 2 3 1

. . . if server is already known† 1 1 1 ≥3 ≥3 3 2 1 2 0

. . . in abbreviated case† 1 0 0 1 1 2 2 1 1 0

∗Includes one round trip for DNS/directory service lookup of unknown server
†Assumes protocol-specific information cached from previous connection to same server

multiple authenticated user-to-service connections within a single encrypted host-to-host tun-

nel, lowers latency by replacing setup handshakes with the publication of ephemeral keys in a

directory service, and builds on carefully designed cryptographic abstractions. We have also

ported MinimaLT to Linux; even in this environment, MinimaLT cleanly provides many se-

curity and performance advantages.

4.1.1.1 Public key

MinimaLT is decidedly public-key-based. Both servers and users are identified by their

public keys; such keys serve as a UUID [128; 95; 144]. Principals prove their identity by

providing ciphertext which depends on both their and the server’s keys. A principal may be
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known—i.e., the underlying OS is aware of a real-world identity associated with the principal’s

public key—or he may be a stranger or anonymous.

Whether strangers are allowed is left to the underlying OS’s authorization policy. In Ethos,

a server can be authorized to create sparse stranger accounts on demand. That is, once a server

encounters a stranger, the server may isolate the stranger’s resources from other users and they

remain available if he returns. We discuss Ethos authorization in Chapter 8.

4.1.1.2 Network tunnel

A MinimaLT tunnel is a point-to-point entity that encapsulates the set of connections

between two hosts. MinimaLT creates a tunnel on demand in response to the first packet

received from a host or a local application’s outgoing connection request. Tunnels provide

server authentication, encryption, congestion control, and reliability; unlike with TLS/TCP,

these services are not repeated for each individual connection.

Tunnels make it more difficult for an attacker to use traffic analysis to infer information

about communicating parties. Of course, traffic analysis countermeasures have limits [145]; for

obvious cost reasons we did not include extreme protections against traffic analysis, such as

using white noise to maintain a constant transmission rate.

A MinimaLT server does not respond unless the remote user is authorized to connect. In

existing protocol layering, this is possible only using weak, IP-address-based authentication;

as we show, MinimaLT authentication is much stronger. Thus MinimaLT makes network

mapping much more difficult. Since most hosts do not offer Internet-wide services, they present

a minimal signature to attackers—even the MinimaLT equivalent to ping will respond only to
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authorized users. Alternatively, MinimaLT servers might be configured to provide services to

anonymous users. This is appropriate for services intended for the Internet at large.

As with IPsec, a MinimaLT tunnel provides cryptographic properties that ensure confi-

dentiality and integrity. However, MinimaLT has been designed to provide tighter guarantees

than IPsec, which (as generally used in practice) provides host-based protections only. In

MinimaLT, connections provide user authentication as described below.

4.1.1.3 Connections

A MinimaLT tunnel contains a set of connections, that is, a single tunnel between two

hosts encapsulates an arbitrary number of connections. Each connection is user-authenticated

and provides two-way communication between a client application and service. In addition

to multiplexing any number of standard application-to-service connections, each MinimaLT

tunnel has a single control connection, along which administrative requests flow (§4.1.2.3).

4.1.1.4 Directory service

Central to our protocol is the MinimaLT directory service. The directory service resolves

queries for hostname information, providing a server’s directory certificate, signed by the server’s

long-term key. This returned certificate contains the server’s IP address, UDP port, long-term

key, zero padding (the minimum payload size of the initial packet), and an ephemeral key. An

additional certificate vouches for the server’s long-term public key and ties it with the server’s

hostname. Servers register with a MinimaLT directory service to provide this information, and

they update their ephemeral key at a rate depending on their security requirements. In §4.1.4

we describe how directory services integrate with DNS to span the Internet.
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4.1.1.5 Cryptography

MinimaLT uses NaCl, a cryptographic suite which includes symmetric encryption algo-

rithms, cryptographic hashing, DH, and signatures [146; 147]. We chose NaCl for its high

performance, simple interface, and immunity to software side-channel attacks. NaCl’s sym-

metric cryptography provides both encryption and integrity protection. MinimaLT also uses

NaCl’s ECC DH and SHA-512 cryptographic hashing.

NaCl’s box encrypts and authenticates, and box open verifies and decrypts. These routines

come in two flavors, a symmetric key version which takes a single key and a public key version

which takes one party’s public key and the other party’s private key. In addition to the key(s),

box/box open take plaintext/ciphertext and a number-used-once (nonce).

4.1.2 MinimaLT layering and packet format

MinimaLT can be broken into three conceptual layers: delivery, tunnel, and connection,

and these layers correspond to the design described above. The delivery layer contains rout-

ing and other information necessary to deliver a packet to its destination host. This layer is

made up of the standard Ethernet, IP, and UDP protocols. The tunnel layer provides the

cryptographic and reliability information necessary to support MinimaLT tunnels. This in-

cludes server authentication, encryption, cryptographic integrity protections, DoS protections,

and congestion control. Finally, the connection layer provides for application-to-application

RPCs. Here we introduce these layers and their fields before describing in more detail how the

MinimaLT protocol uses them in §4.1.3.
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︸ ︷︷ ︸
Delivery

Ethernet IP UDP ︸ ︷︷ ︸
Tunnel (cleartext)

TID Nonce Opt. ephemeral pub. key Opt. puzzle/solution

︸ ︷︷ ︸
Tunnel (cryptographically protected)

Checksum Seq Ack RPC0 RPC1 · · · RPCm

(a) MinimaLT packet format with cleartext in white and cryptographically protected portion in gray

Size (bytes)

Field First Successive

Delivery fields

Ethernet header 14 14

IP 20 20

UDP 8 8

Cryptographic fields

Tunnel ID 8 8

Nonce 8 8

Ephemeral public key 32 n/a

Puzzle/solution 148 n/a

Checksum 16 16

Reliability fields

Sequence num. 4 4

Acknowledgment 4 4

Connection fields

Connection ID 4 4

RPC variable

Total (except RPC) 282 86

(b) Header field sizes in a MinimaLT tunnel’s first/successive packets

Figure 11: MinimaLT packet format and header field sizes
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The packet format itself is simple and is given in Figure 11. The cleartext portion of

the packet contains the Ethernet, IP, and UDP headers; the Tunnel ID (TID); a nonce; and

two optional fields used at tunnel initiation—an ephemeral public key and a puzzle. A client

provides the public key only on the first packet for a tunnel, and a server requires puzzles

opportunistically to prevent memory and computation attacks.

The packet’s cryptographically protected portion contains ciphertext and the ciphertext’s

cryptographic checksum. The ciphertext contains a sequence number, acknowledgment number,

and a series of RPCs. In contrast to byte-oriented protocols, we use RPCs at this layer because

they result in a clean design and implementation; they are also general and fast (§4.2). RPCs

have a long history dating to the mid-1970s [148; 149].

4.1.2.1 Delivery layer

The usual Ethernet, IP, and UDP headers allow the delivery of packets across existing net-

work infrastructure; they play no role in any packet processing within MinimaLT. The UDP

header allows packets to traverse NATed networks [150], and it enables user-space implemen-

tations of MinimaLT. Aside from the length field, the UDP fields are otherwise uninteresting

for MinimaLT.

4.1.2.2 Tunnel layer (cryptography and reliability)

The tunnel establishment packet (the first packet sent between two hosts) contains a TID,

a nonce, and the sending host’s (ephemeral) public DH key. The TID is pseudo-randomly

generated by the initiator. The public key is ephemeral to avoid identifying the client host to

a third party, but onion routing might be necessary to also blind the IP address [35].
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The recipient cryptographically combines the client’s ephemeral public key with its own

ephemeral private key to generate the symmetric key (§4.1.3). The recipient then uses this

symmetric key and the nonce to verify and decrypt the encrypted portion of the packet.

After tunnel establishment, the tunnel is identified by its TID. Successive packets embed

the TID, which the recipient uses to look up the symmetric key which in turn is used to decrypt

the payload. Thus MinimaLT reduces packet overhead by using TIDs rather than resending

the public key. The TID is 64 bits—one quarter the size of a public key—with one bit indicating

the presence of a public key in the packet, one bit indicating the presence of a puzzle/solution,

and 62 bits identifying a tunnel.

The nonce ensures that each payload transmitted between two hosts is uniquely encrypted.

The nonce is a monotonically increasing value; once used, it is never repeated for that (un-

ordered) pair of keys. The nonce is odd in one direction (from the side with the smaller key)

and even in the other direction, so there is no risk of the two sides generating the same nonce.

Clients enforce key uniqueness by randomly generating a new ephemeral public key for each

new tunnel; this is a low-cost operation. For a host which operates as both client and server,

its client ephemeral key is in addition to (and different from) its server ephemeral key.

The tunnel layer also contains an optional field that might contain a puzzle request or

solution (§4.1.3.1). The purpose of the puzzle here is to protect against spoofed tunnel requests.

Such an attack might cause a server to perform relatively expensive DH computations. A puzzle

both demonstrates connectivity and expends initiator resources, and thus limits attack rates.

(In addition to the puzzle header fields, MinimaLT provides puzzle RPCs to defend against
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Sybil attacks [151; 61] after a tunnel has been established. We describe the details of both in

§4.1.3.4 and evaluate them in §4.2.3.)

Beyond the cleartext fields mentioned so far, the tunnel layer contains a strong 128-bit

cryptographic checksum (a keyed message-authentication code) of the ciphertext. An attacker

does not have the shared symmetric key, so any attempt to fabricate ciphertext will be detected.

The final component of the tunnel header consists of reliability information in the form of

sequence and acknowledgment fields. MinimaLT’s reliability and connection (described below)

headers are part of the ciphertext, so they are protected against tampering and eavesdropping.

The total size of the delivery, reliability, and connection headers is equal to that of the headers

in TCP/IP. We discuss packet overhead further in §4.2.1.

4.1.2.3 Connection layer

MinimaLT’s connection layer supports an arbitrary number of connections, where each

connection hosts a series of RPCs. We depict RPCs using the form fc(a0, a1, . . .), where f is

the name of the remote function, c is the connection that the RPC is sent to, and a0, a1, . . .

are its arguments. A single packet can contain multiple RPCs, which amortizes the overhead

due to MinimaLT’s delivery and tunnel fields across multiple connections. We discuss Ethos’

particular RPC encoding format in Chapter 6.

One connection is distinguished: connection 0 is the control connection and hosts the man-

agement operations which maintain the tunnel and its other connections. These control RPCs

create, close, accept, and refuse connections; provide certificates (§4.1.3.1); perform rekeying
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(§4.1.3.2); support IP address changes (§4.1.3.3); support puzzles (§4.1.3.4); authenticate users

(§4.1.3.6); and support window size adjustments (§4.1.3.7):

RPC Description

create0(c, s) create an anonymous connection c of type s

createAuth0(c, s, U , x) create an authenticated connection for the user with long-term public
key U , who generates authenticator x

close0(c) close connection c

ack0(c) creation of c successful

refuse0(c) connection c refused

requestCert0(H) get host H’s certificate

provideCert0(cert) provide the certificate cert

ok0() last request was OK

nextTid0(t, C ′) advertise future TID to prepare for a rekey or IP address change

puzzle0(p, h, w) pose a puzzle

puzzleSoln0(p, h, w) provide a puzzle solution

windowSize0(c, n) adjust connection receive window

In general, each service provided by a host supports a set of service-specific RPCs on stan-

dard connections, so data on these connections are sent unchanged to their corresponding

applications. Our illustrations use the following sample RPC:

serviceRequestc(...) a request for some type of service on connection c

The tunnel, and the RPCs within it, are totally sequenced. Thus RPCs are executed in

order (as opposed to separately implemented connections—as in TLS—where ordering between

connections is not fixed). This enables a clean separation of the control connection from other

connections. We have found that this simplifies both the protocol and its implementation.
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C DConn., req. ephemeral key

Ephemeral key

Conn., req. server information

IP address, UDP port, key,

ephemeral key of S

T1

T2

(a) Prelude to connection establishment: performed if the tunnel does not yet exist

C S
Connect,

application-to-service RPC
T3

(b) Connection establishment

Figure 12: MinimaLT protocol trace

4.1.3 Protocol

The purpose of the protocol is to allow protected communication between a client and

server. We discuss here the establishment of a symmetric key §4.1.3.1, rekeying §4.1.3.2, IP-

address mobility §4.1.3.3, puzzles §4.1.3.4, the absence of a three-way handshake §4.1.3.5, user

authenticators §4.1.3.6, and congestion control §4.1.3.7.

4.1.3.1 Establishing the symmetric key

MinimaLT approaches PFS, encrypting sensitive data using only ephemeral keys; it protects

both client-side data and identity. In this section, we will show the negotiation of keys and the

transmission of RPCs in the absence of puzzles. This is the normal case, when servers are not

under heavy load.

At least three entities cooperate to establish a symmetric key: a client C, a directory service

D, and a server S. Here we discuss the intra-organizational case, where a single organization
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maintains C, D, and S. In §4.1.4 we show how MinimaLT scales to the Internet using DNS,

while providing security at least as strong as DNSSEC [152] with no additional latency. Even-

tually, a pure MinimaLT solution could span the entire Internet.

The client can compute the shared secret after a maximum of two round trips, and can

include application data in the first packet sent to the server. (The common case is that the

client can immediately compute the shared secret with zero round trips.) Each trip uses a

different tunnel:

T1 C establishes a tunnel, anonymously, to D in order to obtain D’s ephemeral public key;

T2 C establishes a tunnel to D using ephemeral keys to lookup S’s contact information; and

T3 C establishes a tunnel to S using ephemeral keys.

Figure 12 depicts this process. C establishes tunnel T1 once, at boot time. This is the only

tunnel that does not use a server ephemeral key, so C does not yet provide D with a user

authenticator. Next, C establishes tunnel T2 to collect the information necessary for the first

connection between C and S. It uses this information to establish tunnel T3. The tunnel

establishment packet for tunnel T3 may include application-to-service RPCs. Successive con-

nections to S skip T1 and T2, and tunnel T2 remains open to look up other servers. We use

the following notation to describe the details:

t A tunnel ID (described in §4.1.2)
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n A nonce (described in §4.1.2)

s A sequence number

a An acknowledgment number

0 or c The connection ID

z A puzzle

z′ A puzzle solution

C,D, S The client, directory, and server long-term public/private key

C ′, D′, S′ An ephemeral client, directory, and server public/private key

C → S A message from the client to the server, using keys C and S

H(m) The cryptographic hash of message m

m k
n Encrypt and authenticate message m using symmetric key k and nonce n

m S→P
n Encrypt and authenticate message m using a symmetric key derived from

public key P and private key S; n is a nonce

We show each packet on a single line such as

t, n, C ′, s, a, . . . C′→S′
n

which indicates a tunnel establishment packet (due to the presence of the cleartext C ′, as

described in §4.1.2.2) from C to S using keys C ′ and S′ to box (encrypt and authenticate) the

message ‘s, a, . . .’. Each packet has a new nonce but for conciseness we simply write n rather

than n1, n2, etc. The same comment applies for sequence numbers (s) and acknowledgments

(a).
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At boot time, C establishes a tunnel with D (Figure 12a, tunnel T1); C’s configuration

contains D’s IP address, UDP port, and long-term public key D. First, C generates a single-

use public key C ′ and uses it to create a bootstrap tunnel with the directory service.

t, n, C ′, s, a, requestCert0(D) C′→D
n

t, n, s, a, provideCert0(Dcert) D→C′
n

D responds with a certificate containing its own ephemeral key, D′, signed by D. C uses

this to establish a PFS tunnel to request S’s directory certificate. Tunnel T2 uses a fresh C ′

and is established by:

t, n, C ′, s, a, requestCert0(S) C′→D′
n

t, n, s, a, provideCert0(Scert) D′→C′
n

After receiving S’s Scert, C is ready to negotiate tunnel T3. C encrypts packets to the

server using S′ (from Scert) and a fresh C ′. Because C places its ephemeral public key in the

first packet, both C and S can immediately generate a shared symmetric key using DH without

compromising PFS. Thus C can include application-to-service data in the first packet. That

is,

t, n, C ′, s, a, nextTid0(t, C ′), createAuth0(1, serviceName,U,x), serviceRequest1(. . .) C′→S′
n
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We describe the purpose of nextTid0 in §4.1.3.2. Upon receiving createAuth0, S verifies the

authenticator x (§4.1.3.6) and decides if the client user U is authorized to connect. If so, S

creates the new connection (with ID 1). The server ensures no two tunnels share the same C ′.

The service-specific serviceRequest1 can then be processed immediately on the new connection.

Tunnels are independent of the IP address of C; this means that C can resume a tunnel

after moving to a new location (typically prompting the use of the next ephemeral key as

described below), avoiding tunnel-establishment latency and application-level recovery due to

a failed connection. This reduced latency is useful for mobile applications, in which IP-address

assignments may be short lived, and thus overhead may prevent any useful work from being

done before an address is lost.

Before a client may connect, S must register its own IP address, UDP port, public key, and

current ephemeral public key with D. This is done using the provideCert0 RPC (here S has

already established a tunnel with D as we describe above):

t, n, s, a, provideCert0(Scert) S′→D′
n

t, n, s, a, ok0() D′→S′
n

4.1.3.2 Rekey

PFS requires periodic rekeying, so that old encryption keys can be forgotten. This prevents

an attacker who compromises a host from decrypting the packets encrypted using previous keys.

Prior to a rekey, a host creates the next TID t and sends it to the opposite host using nextTid0.
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(We describe the C ′ argument to nextTid0 below.) Although either side may invoke nextTid0,

rekeying is initiated only by the client.

We reduce the rekeying workload for the client and server as follows: To rekey, the client

sends a tunnel initiation packet using the next TID. The client generates a one-time valid key

pair used for this initiation and places the public part of this key pair in this packet so that

it is indistinguishable from a true tunnel initiation packet. (For obvious reasons, the client-

generated public key is never reused for a successive rekey. Instead, future keys are likewise

randomly selected.) However, instead of computing a new shared secret using DH, the client

simply uses the hash of the previous symmetric key. The client then repeats its one-time public

key inside the boxed part of the message (i.e., as the C ′ argument to another nextTid0).

When the server receives a packet whose TID matches a known next TID, the server hashes

the existing symmetric key for that tunnel to produce the new key, and then verifies and

decrypts the packet. The server also verifies that the public key sent in clear matches the

public key inside the boxed part of the message. (Without this verification, a MitM attacker

could modify the public key sent in the clear, observe that the server still accepts this packet,

and confidently conclude that this is a rekey rather than a new tunnel.) If both verifications

succeed then the server updates the tunnel’s TID and handles the packet; otherwise it behaves

as for failed tunnel initialization. Thus the rekey process inflicts neither superfluous round trips

nor server public-key operations.

Typically, clients invoke nextTid0 immediately after creating a new tunnel, and after assum-

ing a new TID/key. Servers invoke nextTid0 if their PFS interval expires. Clients then assume
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a new TID/key when their rekey interval expires or immediately after receiving a nextTid0 from

the server (the latter implies that the server’s key has expired).

A client-side administrator sets his host’s rekey interval as a matter of policy. The server’s

policy is slightly more sensitive, because the server must maintain its ephemeral key pairs as

long as they are advertised through the directory service. An attacker who seizes a server could

combine the ephemeral keys with captured packets to regenerate any symmetric key within

the ephemeral key window. Thus even if the client causes a rekey, the server’s ephemeral key

window dominates on the server side. This asymmetry reflects reality, because each side is

responsible for their own physical security. The client knows server policies and can restrict

communication to acceptable servers.

4.1.3.3 IP-address mobility

Because MinimaLT identifies a tunnel by its TID, the tunnel’s IP and UDP port can

change without affecting communication; indeed, one purpose of nextTid0 is to support IP-

address mobility. After changing its IP address or UDP port, a host simply assumes the next

TID as with a rekey. The other host will recognize the new TID and will transition the tunnel

to the new key, IP address, and UDP port. Thus a computer can be suspended at home and

then brought up at work; an application which was in the middle of something could continue

without any recovery actions.

MinimaLT reduces an attacker’s ability to link tunnels across IP address changes because its

TID changes when its IP address changes. What remains is temporal analysis, where an attacker

notices that communication on one IP address stops at the same time that communication on
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another starts. However, the attacker cannot differentiate for sure between IP mobility and an

unrelated tunnel establishment. Blinding information below the network layer—for example,

the Ethernet MAC—is left to other techniques.

4.1.3.4 Puzzles

MinimaLT uses puzzles selectively, so that their costs are only incurred when the server is

under load. There are two ways MinimaLT can pose puzzles: as a part of the tunnel header

(to avoid abusive DH computations) or by using the puzzle RPCs after establishing a tunnel.

In the former case, a MinimaLT server under load that receives a tunnel establishment packet

from a stranger for a stranger-authorized service does not create a tunnel. Instead, it responds

with a puzzle:

z′ = C ′, S′ k
n′

where k is a secret known only to the server. It then calculates z′′ by zeroing z′’s rightmost

w bits (i.e., the client will take O(2w−1) operations to solve the puzzle), where the server

dynamically selects w based on its policy. The server sends the puzzle z = [z′′, H(z′), w, n′] to

the client:

t, n, z

The server forgets about the client’s request. The client must solve the puzzle z and provide

the solution z′ along with n′ in a new tunnel establishment packet using the same C ′ and S′.
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The client brute forces the rightmost w bits of z′′ to find z′ with a matching hash and responds

to the server with:

t, n, [z′, n′], s, a, . . . C′→S′
n

To confirm a solution, the server decrypts z′ using k and n′, confirms C ′ and S′ and ensures

that n′ is within an acceptable window. Although the server has forgotten z′, these protections

ensure that the puzzle cannot be reused for other tunnel establishment attempts.

After a tunnel has been established, hosts can use the puzzle RPCs to perform small-w

proof-of-life/liveness challenges on idle tunnels that might befit garbage collection. Stranger-

authorized servers can also use the puzzle RPCs to slow Sybil attacks, whereby an attacker

tries to generate many identities to cause public-key authenticator validations on the server.

We evaluate MinimaLT’s puzzles in §4.2.3.

4.1.3.5 No transport-layer three-way handshake

As described above, MinimaLT establishes an ephemeral symmetric key with a minimal

number of round trips; MinimaLT also subsumes the need for a transport-layer three-way

handshake when establishing each application-to-service connection. TCP’s three-way hand-

shake establishes a random ISN. This is necessary for two reasons: (1) the ISN serves as a weak

authenticator (and liveness check) because a non-MitM attacker must predict it to produce

counterfeit packets, and (2) the ISN reduces the likelihood that a late packet will be delivered

to the wrong application.
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MinimaLT encrypts the sequence number, provides cryptographic authentication, and

checks liveness using puzzles, addressing (1). MinimaLT uses TIDs, connection IDs, and nonces

to detect late packets, addressing (2). Thus MinimaLT can include application data in a con-

nection’s first packet, as discussed above. Extra round trips are necessary only if the tunnel

does not exist; and then only when the client does not have S’s directory certificate or is pre-

sented with a puzzle. If the server provides a puzzle, it means that the server is under heavy

load so that additional latency is unavoidable.

4.1.3.6 User authenticators

Every user serviced by MinimaLT is identified by his public key. The createAuth0 au-

thenticator is the server’s long-term public key encrypted and authenticated using the server’s

long-term public key, the user’s long-term private key U , and a fresh nonce n:

x = S U→S
n

Because authenticators are transmitted inside boxes (as ciphertext), they are protected from

eavesdropping, and because the authenticator is tied to the server’s public key, the server cannot

use it to masquerade as the user to a third-party MinimaLT host. Of course, any server could

choose to ignore the authenticator or perform operations the client did not request, but that is

unavoidable. If third-party auditability is desired then users can choose to interact only with

servers that take requests in the form of certificates.
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Figure 13: An external directory service query

4.1.3.7 Congestion/Flow control

MinimaLT’s tunnel headers contain the fields necessary to implement congestion con-

trol, namely sequence number and acknowledgment fields. We presently use a variation of

TCP’s standard algorithms [153]. As with TCP [154], efficient congestion control is an area of

open research [155], and we could substitute an emerging algorithm with better performance.

MinimaLT does have one considerable effect on congestion control: controls are aggregated for

all connections in a tunnel, rather than on individual connections. Since a single packet can

contain data for several connections, the server no longer needs to allocate separate storage for

tracking the reliability of each connection. This also means that MinimaLT need not repeat

the discovery of the appropriate transmission rate for each new connection, and a host has

more information (i.e., multiple connections) from which to derive an appropriate rate. The

disadvantage is that a lost packet can affect all connections in aggregate.

MinimaLT hosts adjust per-connection flow control using the windowSize0 RPC.

MinimaLT subjects individual connections to flow control, so windowSize0 takes as param-

eters both a connection ID and size. MinimaLT currently implements TCP-style flow control.
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4.1.4 A directory service that spans the Internet

Within an organization, an administrator maintains clients, servers, and a directory ser-

vice. However, clients will often want to connect to services outside of their organization, so it

becomes necessary to obtain external servers’ directory service records. MinimaLT integrates

disparate directory services using DNS in a way that does not add latency to the current require-

ment of performing a DNS lookup. MinimaLT directory services support their organization

as described above, but also can make DNS queries about external hosts and can service DNS

queries about local hosts. (We note that this section describes how to integrate MinimaLT with

the existing Internet infrastructure while providing at least the security provided by DNS/TLS;

we would prefer to replace DNS with a pure MinimaLT infrastructure because this would

provide stronger security.)

We depict an external lookup in Figure 13. As described in §4.1.3.1, servers such as S2

publish their ephemeral keys to their local directory service (1). To connect to an external server,

e.g., example.com’s S2, the client C1 requests S2’s information from C1’s directory service D1 (2),

and, if cached, D1 immediately replies. Otherwise, D1 makes a DNS request for example.com’s

S2 (3). The DNS reply from example.com’s DNS/directory service D2 is extended to contain

a full MinimaLT server record, split into one long-term DNS record containing S2’s long-term

key and a chain certifying the identity of this key, and one shorter-term DNS record containing

an IP address, a UDP port, and an ephemeral server key, all signed by S2. Once D1 receives

this DNS reply (4), it can respond to C1’s request as earlier described (5).
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The integration of MinimaLT’s directory services with DNS affects DNS configurations in

two ways. First, the shorter-term DNS record’s time to live must be set to less than or equal

to the rekey interval of the host it describes. We expect this to have a light impact, because

many organizations already select short times to live. Second, DNS replies will grow due to

the presence of additional fields. The largest impact is the identity certificate, which we expect

will initially be encoded as X.509, although smaller certificate encodings could reduce this cost.

We also expect to initially adopt a certificate-authority-based trust model, because this is most

commonly used on the Internet. Of course, future revisions could adopt stronger and more

flexible trust models, and any latency impact they might incur would also be present if they

were applied to DNS/TLS.

4.2 Evaluation

We summarized the security protections and other key properties of MinimaLT in Table III.

Here we evaluate MinimaLT’s packet overhead (§4.2.1); the performance of creating new tun-

nels, creating connections on existing tunnels, and transmitting data (§4.2.2); DoS defenses

(§4.2.3); and prospects for further performance improvements (§4.2.4).

4.2.1 Packet header overhead

MinimaLT’s network bandwidth overhead is modest. A small additional overhead when

compared to TCP/IP is due to MinimaLT’s cryptographic protections, and includes the nonce,

TID, and checksum (the public key/puzzle fields are rarely present, so they are insignificant

overall). Thus MinimaLT requires 32 bytes more for its headers than TCP/IP; this represents

6% of the minimum Internet MTU of 576 bytes, and 2% of 1518-byte Ethernet packets.
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4.2.2 Performance evaluation

We experimentally evaluate MinimaLT’s performance in three areas:

(1) the serial rate at which MinimaLT establishes tunnels/connections, primarily to study

the effect of latency on the protocol;

(2) the rate at which MinimaLT establishes tunnels/connections when servicing many clients

in parallel; and

(3) the throughput achieved by MinimaLT.

All of our performance tests were run on two identical computers with a 4.3 GHz AMD FX-

4170 quad-core processor, 16GB of memory, and a Gb/s Ethernet adapter. We benchmarked

in 64-bit mode and on only one core to simplify cross-platform comparisons.

4.2.2.1 Serial tunnel/connection establishment latency

In each of our serial connection benchmarks, a client sequentially connects to a server, sends

a 28-byte application-layer request, and receives a 58-byte response. We measure the number

of such operations completed in 30 seconds, where each measurement avoids a DNS/directory

service lookup. We performed this experiment under a variety of network latencies using Linux’s

netem interface.

We compare against OpenSSL 1.0.0j using its s server and s time utilities. We first config-

ured an OpenSSL client and server to use 2,048-bit RSA as recommended by the US National

Institute of Standards and Technology (NIST) [156], along with 128-bit AES, ephemeral DH,

and client-side certificates. In order to ensure disk performance did not skew our results, we
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modified s server to provide responses from memory instead of from the filesystem. We also

wrote a cleartext benchmark which behaves similarly, but makes direct use of the POSIX socket

API, avoiding the use of cryptography.

We benchmarked MinimaLT on Ethos. To produce results analogous to OpenSSL, simulat-

ing both (1) many abbreviated connection requests to one server and (2) many full connection

requests to many servers, we tested both (1) the vanilla MinimaLT stack and (2) a MinimaLT

stack we modified to artificially avoid tunnel reuse.

Figure 14a displays, in log scale, the rate of MinimaLT and OpenSSL when creating full,

client-user-authenticated connections. For each connection, MinimaLT creates a new tunnel

and authenticates the client user, and OpenSSL performs a full handshake; each requires public-

key operations.

At native LAN latencies plus 1/16 ms (LAN+1/16 ms), MinimaLT took 1.32ms to complete a

full connection, request, and response, and OpenSSL took 7.63ms. MinimaLT continued to out-

perform OpenSSL as network latency increased. At LAN+256ms, MinimaLT took 526.31ms,

while OpenSSL took 2.13s.

Figure 14b displays abbreviated connection speed. In this case, MinimaLT reuses an already

established tunnel and OpenSSL takes advantage of its session ID to execute an abbreviated

connection. Here both systems avoid computing a shared secret using DH, except in the case

of the first connection. At LAN+1/16 ms, MinimaLT took 1.03ms to complete a connection,

request, and response over an existing tunnel. Under the same conditions, OpenSSL took 1.67ms
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Figure 14: Time spent creating a connection when using MinimaLT, cleartext TCP/IP, and
TLS (less is better)

to complete an abbreviated connection, request, and response. At LAN+256ms, MinimaLT

took 517.24ms, while OpenSSL took 1.60s.

In all measurements, MinimaLT connections incur less latency than OpenSSL. More sur-

prisingly, MinimaLT creates connections faster than raw TCP/IP beginning before LAN+1/4

ms latency in the case of abbreviated connections and beginning before LAN+1/2 ms latency

otherwise. We experience latencies of at least this magnitude on any packets which leave our
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TABLE IV: MinimaLT connection rate with many clients

Tunnels User Connections DH per

per run Auth. per second conn.

One 18,453 0

One X 8,576 1

Many 7,827 1

Many X 4,967 2

laboratory room (i.e., are processed by our router). Figures 14c and 14d show the ratio between

MinimaLT and raw TCP/IP performance. We attribute our results to MinimaLT’s efficient

tunnel/connection establishment (especially at high latencies) and to the speed of the NaCl

library (especially at low latencies).

4.2.2.2 Tunnel establishment throughput with many clients

We next measured the CPU load on a MinimaLT server servicing many clients. To do

this, we ran two client Ethos instances, each forking several processes that connected to the

server repeatedly as new clients; here each virtual machine instance was running on a single

computer. Because this experiment concerns CPU use and not latency, these clients do not

write any application-layer data, they only connect. Using xenoprof and xentop, we determined

that the Ethos server was crypto-bound (i.e., 63% of CPU use was in cryptography-related

functions—primarily public key—and the server CPU load was nearly 100%). We measured

the number of full connections per second achieved under this load, and varied the Ethos

configuration from accepting fully anonymous users (no authenticators), to verifying a new

user authenticator for each connection request. MinimaLT established 4,967–7,827 tunnels per

second, as shown in Table IV (rows 3–4).
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Given the minimal tunnel request size of 1,024 bytes, our hosts can (on a single core) service

61.15Mb/s of tunnel requests from anonymous users and at least 38.80Mb/s of tunnel requests

from authenticated users. We note that this is the worst case for authenticated users. In

general, we would cache valid user authenticators, thereby avoiding DH operations. Thus in

practice we expect the authenticated user case to approach that of anonymous users.

4.2.2.3 Connection establishment throughput with many clients

We repeated the previous experiment, but this time repeatedly used a single tunnel between

each client and the server. Table IV (rows 1–2) shows that our rates ranged from 8,576–18,453

per second, depending on the presence of user authenticators. The connection rate over a single

tunnel is important for applications which require many connections and when using many

applications to communicate with the same server. Our comments about cached authenticators

in the preceding experiment applies here as well; we would expect in practice the rate of the

authenticated case will approach the anonymous case.

4.2.2.4 A theoretical throughput limit

We used SUPERCOP [157] to measure the time it takes our hardware to compute a shared

secret using DH, approximately 293,000 cycles or 14,000 operations per second. MinimaLT’s

tunnel establishment rate approaches 56% of this upper bound, with the remaining time in-

cluding symmetric key cryptography, scheduling, and the network stack.

4.2.2.5 Single-connection data throughput

Finally, we measured the network throughput between two Ethos hosts. Table V describes

our throughput results, observed when running programs that continuously transmitted data on



91

TABLE V: Comparison of MinimaLT throughput with other protocols (ignoring protocol
overhead)

System Bytes per second

Line speed 125,000,000

Unencrypted 117,817,528

MinimaLT 114,085,068

OpenSSL 95,605,458

a single connection for thirty seconds. MinimaLT on Ethos approaches the throughput achieved

by cleartext networking on Linux and transmits payloads (not counting protocol overhead bytes)

at 91% of line speed (Gb/s). Indeed, MinimaLT’s cryptographic operations run at line speed;

header size differences are the primary reason the cleartext benchmark outperforms MinimaLT.

4.2.3 Denial of service

DoS protections in MinimaLT are intended to maintain availability against much more

severe attacks than are handled by current Internet protocols. Of particular concern are DoS

attacks which consume memory or computational resources; the protocol cannot directly de-

fend against network exhaustion attacks, although it avoids contributing to such attacks by

preventing amplification.

We introduced anonymous and stranger-authorized services in §4.1.1.1. Anonymous services

(i.e., permit create0) must perform a DH computation to compute a shared secret and maintain

tunnel data structures that consume just under 5KB each (this is configurable, most memory

use is due to incoming and outgoing packet buffers). Stranger-enabled services (i.e, require

createAuth0, but permit strangers) must additionally perform a public-key decryption to validate

each new user authenticator encountered.
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4.2.3.1 Before establishing a tunnel

In the case of anonymous services, a single attacker could employ a large number of

ephemeral public keys to create many tunnels, with each tunnel requiring a DH computation

and consuming memory on the server. Furthermore, the attacker’s host might avoid creating

a tunnel data structure or performing any cryptographic operations, thus making the attack

affect the server disproportionately.

As discussed in §4.1.3.1, MinimaLT addresses these attacks using puzzles present in its

tunnel headers. Servicing tunnel requests in excess of the limits discussed in §4.2.2 would cause

a server to require puzzles. Ethos can generate and verify 386,935 puzzles per second on our

test hardware. Since a puzzle interrogation and padded solution packet are 206 and 1,024 bytes,

respectively, a single CPU core can handle puzzles at 394% of Gb/s line speed.

At tunnel establishment, MinimaLT may respond to packets from clients which spoof an-

other host’s IP address. This is always the case with the directory service, which initially must

react to a request from an unknown party before transitioning to PFS-safe authentication. A

MitM could spoof the source of packets, even while completing a puzzle interrogation. A weaker

attacker could elicit a response to the first packet sent to a server. Given this, MinimaLT is de-

signed to minimize amplification attacks. Amplification attacks cause replies from a legitimate

service to be sent to a spoofed source address, and are compounded when protocol replies are

larger than requests. A MinimaLT connection request causes a connection acknowledgment or

puzzle interrogation; both responses are smaller than the request.
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4.2.3.2 After establishing a tunnel

Given a tunnel, an attacker can easily forge a packet with garbage in place of ciphertext

and send it to a service. This forces MinimaLT to decrypt the packet and verify its checksum,

wasting processor time. However, MinimaLT’s symmetric cryptography on established tunnels

operates at line speed on commodity hardware (§4.2.2), so DoS would be equivalent to the

attacker saturating a Gb/s link.

Low cost (small w) puzzles can be used to check that a client is still reachable. Puzzles can

occur at other than connection establishment time, so they can require that a client perform

work to keep a connection alive. We use control connection RPCs to pose and solve these

puzzles to prevent an attacker from attempting RST-style mischief [140].

Stranger services are vulnerable to further CPU attacks—attackers could generate false

user identities that would fail authentication, but only after the server performed a public-

key decryption. A server will apply the puzzle RPCs when connection rates exceed the limits

discussed in §4.2.2.

An attacker could also generate verifiable authenticators and connect to a stranger-

authorized service many times as different stranger users. This would cause Ethos to generate

sparse accounts for each stranger user. However, this is no different from any other creation of

pseudo-anonymous accounts; it is up to the system to decide how to allocate account resources

to strangers. Perhaps the rate is faster because of the lack of a Captcha, but unlike many

contemporary pseudo-anonymous services, Ethos can prune stranger accounts as necessary; the

stranger’s long-term resources (e.g., files on disk) will remain isolated and become available if
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the account is later regenerated because public keys remain temporally unique [95]. Of course,

applications could impose additional requirements (e.g., a Captcha) before allowing a stranger

to consume persistent resources like disk space.

4.2.4 Ongoing performance tuning

Using a single CPU core, MinimaLT transmits encrypted data at nearly one Gb/s and

performs thousands of authentications per second. Future work will focus on increasing the

rate of the public key operations inherent to tunnel establishment through the use of multiple

CPU cores. We expect a roughly N -fold improvement in cryptography from using N cores,

and thus expect Gb/s-speed anonymous tunnel establishment using 16 cores and Gb/s-speed

authenticated connection establishment using 25 cores. These represent upper bounds, where

incoming traffic consists only of tunnel establishment packets. In reality, traffic will contain

other requests, and Ethos caches valid authenticators to speed up authenticated connections.



CHAPTER 5

AUTHENTICATION

The abstractions used to provide OS authentication are fundamental to a system’s security.

Despite this, integrating authentication in a way which is simple, general, and robust against

attack has proven elusive. Here we describe how we integrate the authentication facilities

provided by MinimaLT into the semantics of Ethos’ network-authentication-related system

calls, as well as how Ethos provides for local authentication (because this is a prerequisite to

network authentication).

Systems must authenticate both local and remote users, but subtle vulnerabilities can be

a consequence of system design. In authentication privilege escalation [127], a process gains

unintended privileges using authentication primitives. Here there are two possibilities:

(1) Processes p0 and p1 are owned by different users; p0 crafts p1’s state to trick p1 into doing

something.

(2) A process acquires elevated privileges for authentication and is attacked before it drops

them.

For an example of (1), p0 might set an environment variable to specify the filesystem location

from which dynamic libraries are loaded and then exec a setuid-program p1 [158]. In fact, p0 can

craft p1’s state in many ways, including environment variables, file descriptors, and command-

line inputs. A näıve programmer may be unaware of such attacks, and even sophisticated

95
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programmers make mistakes. Libraries pose particular problems because of unavailable source

code and revisions that affect previously installed programs. In (2), elevated privileges increase

the impact of vulnerabilities.

Ethos introduces new, safer-to-use authentication mechanisms. Ethos’ contributions to

authentication are as follows:

• Ethos authenticates all network requests before any application code runs.

• Ethos is free from authentication privilege escalation.

• Ethos has new, simple-to-use authentication system calls.

• System administrators rely on system-level authorization and network authentication, and

thus do not need to audit application code for these properties.

In addition, Ethos guarantees high confidentiality of authentication secrets, scales to the

Internet using public-key cryptography, supports multiple identities per user, and supports

anonymity.

5.1 Ethos authentication design

Ethos authentication is deeply integrated into the system’s networking and process mech-

anisms: public key cryptography is integrated with networking, password-based local login is

differentiated from cryptographic-based network authentication, cryptographic keys are man-

aged by Ethos, and both local and network authentication use a common mechanism for creating

credentialed processes. Ethos authenticates all local and remote users.
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An Ethos host uses two different authentication services. A Local Authentication Service

(LAS) contains the name, User ID (UID), and hashed password of each user who can physically

log onto the system, and each host maintains its own LAS. A Remote Authentication Service

(RAS) contains user names and their public keys, server names and their public keys (i.e.,

the directory service described in Chapter 4), and groups. Multiple RASs form a distributed

Public Key Infrastructure (PKI). Unlike with Kerberos, the compromise of a RAS does not

compromise individual users’ private keys because a RAS does not have access to them.

An Ethos host keystore holds the host’s own public and private keys as well as the public

key (root of trust) for the RAS. For each local user, Ethos maintains a user keystore that holds

his public and private keys [98]. Ethos’ keystores drew inspiration from Plan 9’s secstore, the

difference being that keystores are part of the Ethos kernel. The Ethos keystores isolate secret

keys as described in Chapter 3, and further protect user keys because Ethos will not allow their

use (indirectly, through system calls) except for by their locally-authenticated owner.

All users are visible to Ethos. Ethos services do not maintain application-level user

databases, as does MySQL or Apache with mod authn file. A user’s application interaction in

Ethos can be customized solely through authorization (Chapter 8).

5.1.1 Authentication system calls

The most interesting part of Ethos is its system calls, which target a higher level of ab-

straction than POSIX. The most relevant to authentication are the nine system calls in three

categories shown in Table VI. As in POSIX, the child of an Ethos fork inherits the authenti-

cation credentials of its parent. However, Ethos authentication mechanisms are quite different
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TABLE VI: Authentication-related system calls in Ethos

Process

fork create a child process

exec change process executable

exit terminate a process

Authentication

authenticate authenticate a local user

fdSend send a file descriptor

fdReceive receive a file descriptor

Networking

advertise offer a service

import accept a connection to a service

ipc connect to a service

from those of POSIX: there is no setuid system call and the user associated with a process

never changes (§5.1.2). In addition, exec cannot change the authentication credentials of the

process—Ethos does not have a setuid bit. Instead, Ethos provides fdSend/fdReceive (§5.1.2).

Ethos networking and local IPC both use the same system calls: advertise, ipc, and import

(§5.1.4). Network communication is encrypted and protected against tampering by crypto-

graphic checksums (Chapter 4). IPC communication remains as cleartext, but Ethos protects

it against observation and tampering by memory management. In either case, all communica-

tion is subject to authorization on each host participating in the communication.

For local authentication, where the user is physically present at the computer, Ethos provides

an authenticate system call to establish a user’s identity by password (§5.1.3). Passwords are

a relatively weak mechanism [159]. However, local authentication requires physical proximity
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to the computer, eliminating access by the vast number of (remote) attackers. If stronger local

authentication is required, multi-factor authentication using a physical token or biometric can

be used.

Remote authentication is inherently different than local authentication. Here, direct use of

smart cards and biometrics are inappropriate, and passwords are unreliable, due to spoofing, key

logging, and network timing attacks [63; 64]. Furthermore, large botnets—containing upwards

of a million nodes—allow for a staggering number of password attempts, and have been very

effective [1]. Thus Ethos’ ipc/import guarantee that all network connections are authenticated

using public-key cryptography (§5.1.4).

5.1.2 Virtual processes

Ethos’ authentication mechanisms are centered around its virtual processes, per-user pro-

cesses created on demand. To invoke a virtual process, an application sends a tuple of file

descriptors (typically, for a network connection) to it and specifies its user. The API to send

descriptors is:

fdSend(fd[], user, program)

where fd[] is a tuple of file descriptors, user is the user that will own the virtual process,

and program is the file containing the virtual process’ executable code. fdSend’s tuple of file

descriptors simplifies its failure semantics—sending a sequence of file descriptors will either

completely succeed or completely fail. On Ethos, the process which calls fdSend serves as a

distributor, as it distributes file descriptors to the appropriate user’s virtual process.
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After a virtual process has been invoked by fdSend, the virtual process can receive the sent

file descriptor tuple using fdReceive:

fds ←fdReceive()

Naturally, virtual processes require careful authorization. Ethos virtual processes are used

in one of two ways: Typically, when sending a network file descriptor, a distributor sets user

to the remote user associated with the connection. We call this a remote-user virtual process.

Alternatively, the distributor can set user to some user other than the remote user. We call

this an arbitrary-user virtual process. The latter allows for local authentication and mail-like

messaging programs (where the owner of the virtual process is the message recipient, rather

than the message sender/remote user). We will describe the authorization support for both

remote-user virtual processes and arbitrary-user virtual processes in Chapter 8 and present

examples of its use in Chapter 9.

Ethos is free from authentication privilege escalation. Because Ethos processes never change

their owner, their privileges do not change as a result of authentication. A virtual process is

not created using fork, so it has no predecessor process. In that sense, it is like init on Unix

systems. Thus the environment of a virtual process is defined by Ethos and is unaffected by

any process; moreover, only the appropriate distributor may invoke it with fdSend. Finally, the

permission for authentication is narrowly scoped: it does not allow extraneous actions.
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5.1.3 Local authentication

Ethos permits authentication by password (or physical token/biometric) only when the user

can physically interact with the computer—never over the network. For obvious reasons, we

call this local authentication.

The API to authenticate a user such as Alice locally is:

authenticate()

The authenticate system call establishes a trusted path [34; 160] and prompts Alice for her

password. Alice must input a password locally (not over the network), and the password is

never seen by the application. Ethos notes Alice as the owner of the calling process and then

verifies her password; based on this check, authenticate returns true (authenticated) or false

(rejected). Ethos rate limits authentication and logs its use, providing resistance to excessive

local password attempts at the system level.

Authenticate does not require any privilege. It is safe for any application to invoke, as it

does not disclose passwords to the application or change the process’ OS state (as does, e.g.,

POSIX’s setuid).

Figure 15 shows the key code in Ethos’ login program, made up of two programs totaling

68 lines of Go. Alice first provides her name to the login distributor (Line 2). The distributor

passes this name to fdSend, invoking the virtual process loginVP and providing the terminal’s file

descriptors (Line 3). (stdinFd, stdoutFd, and stderrFd correspond to POSIX’s 0/stdin, 1/stdout,

and 2/stderr.) After receiving the file descriptors with fdReceive, loginVP calls the authenticate
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1 do f o r e v e r
2 u s e r ← r e a d ( s t d i n F d ) ;
3 fdSend ( [ s t d i n F d , stdoutFd , s t d e r r F d ] , use r , ” log inVP ”)

(a) Distributor distributes terminal fds to virtual processes

4 s t d i n F d ← f d R e c e i v e ( )
5 s t do ut Fd ← f d R e c e i v e ( )
6 s t d e r r F d ← f d R e c e i v e ( )
7 i f a u t h e n t i c a t e ( )
8 // User a u t h e n t i c a t e d ; e x e c s h e l l .

(b) loginVP checks password and then does user startup

Figure 15: Ethos local authentication in pseudo code

system call (Line 7). Of course, loginVP is already running as Alice when it makes this call; the

call to authenticate simply means that login will not proceed without a valid password.

5.1.4 Network authentication

Ethos cryptographically authenticates all network connections, so applications cannot fail to

authenticate, authenticate a network connection using a password, or incorrectly authenticate.

Ethos’ use of public-key cryptography means that authentication does not require the sharing

of secrets (as with Kerberos), users can create their own key pairs, and each public key is

guaranteed unique. Because of the last property, public keys are UUIDs that can serve as

UIDs [128; 95; 144] as in Taos, even if the user’s real-world identity is not known. This enables

uniform support of stranger, anonymous, and identified principals. Ethos is different than Taos

because Ethos authenticates users without requiring an application to call a procedure like

GetPrin. For these reasons, Ethos reduces the opportunities for application-based subversion of

network authentication.
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For all IPC—including networking—Ethos uses a single mechanism, whereas POSIX pro-

vides sockets, pipes, message queues, shared memory, signals, and so on. A single mechanism

simplifies Ethos’ design, application programming, and access controls. IPC is available through

the advertise, import, and ipc system calls, which we now describe.

serviceFd ←advertise(serviceName)

To register the intent to provide a service, an Ethos application calls advertise. The argument

to advertise is the service name.

netFd, user ←import(serviceFd)

The import system call takes as an argument a service file descriptor that was obtained from

a previous call to advertise. Ethos cryptographically authenticates the remote user associated

with an incoming network request, and subjects the user to its authorization policy (Chapter 8).

Thus import only returns for network requests from authorized (and authenticated) users, and

it can return to the calling program both a network file descriptor and the remote user. In

the case of known users, the returned string is the user’s name; for strangers and anonymous

users, import returns a string representation of the user’s public key. Thus import resembles

Taos’ GetPrin, but Ethos performs mandatory authorization, so an analogue to Taos’ Check is

not necessary.

netFd ←ipc(serviceName, host)

An ipc call attempts to make an encrypted connection to a service. This system call takes

two parameters: serviceName—the service name to connect to—and host—an optional remote

host name. Ethos resolves host to an IP address and public key as a part of servicing the system



104

call (Chapter 4), or it is nil in the case of a local connection. A variation of ipc, ipcWrite, allows

an application to send data on the first packet, as enabled by MinimaLT.

data ←read(fd)
data ←peek(fd)
write(fd, data)

Read reads an object from a file descriptor. Peek behaves like read but does not remove

the object from the file descriptor’s stream. (The necessity of peek is related to arbitrary-user

virtual processes as we will describe in Chapter 9.) Write adds an object to a stream.

Figure 16 depicts an Ethos client initiating a connection to a distributor. The distributor

accepts connections and distributes them, via fdSend, to the appropriately user-credentialed

virtual process.

5.1.5 Principals, strangers, and anonymity

An Ethos user can assume different principals when making network connections on a per-

host-and-service basis. This supports different identities for work, entertainment, and social-

ization. A principal can be a stranger (i.e., not present in a RAS), and anonymous principals

result from creating a new identity on each connection to a service. Whether a service allows

strangers or anonymous users is a matter of authorization (Chapter 8), independent of any ap-
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Figure 16: Interaction of processes in an Ethos client-server application
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plication code. Ethos can isolate the persistent resources of strangers as with identified users,

and assuming strangers protect their private key, no one else can assume their identity during

authentication.

Strong anonymity is difficult to achieve, and depends on its use. Anonymous services need, in

addition to anonymous users, further protections against de-anonymizing, such as with Dissent

[161] or Tor [35]. This level of anonymity is not included in Ethos at the OS level due to its

latency, but Ethos provides a strong foundation on which to build such services.

5.1.6 Implementation

Ethos maintains a hash table of user records. It initially populates this table with the users

in its LAS. Ethos adds on demand other users to the table when it imports their network

connections. In this case, Ethos extracts the user’s UID (public key) from the authenticator

present in MinimaLT and extracts his name from the RAS, if it is known. If the user is not

known to the RAS, then Ethos sets his name to the string form of his public key (this is a

stranger or anonymous user). User records also contain the user’s running virtual process list.

When a process calls fdSend, Ethos first checks whether the running process is authorized

to run the particular virtual process specified by the system call. Ethos then checks the user

record to determine if the target virtual process is already running. If not, Ethos creates it by

allocating the process’ page tables, switching to the process’ address space, setting the process’

UID to the appropriate public key, loading the program image into memory, nullifying all file

descriptor table entries, and allocating a heap and stack. Finally, Ethos adds the fdSend file
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descriptor tuple argument to the virtual process’ incoming fdReceive queue. Ethos will then

schedule the virtual process which can obtain the file descriptors by calling fdReceive.

5.1.7 In brief

Ethos provides a small number of authentication mechanisms, each designed to be strong

and easy-to-use. The authenticate system call allows for local authentication without sharing

authentication secrets with applications. An Ethos process and its descendants share a single,

immutable user, but processes can invoke per-user virtual processes through the use of the

fdSend and fdReceive system calls. Virtual processes are executed by the kernel, as with init,

and thus their environment cannot be influenced by another program.

Authentication is also built into the ipc and import system calls, so network authentication

is both implicit and cryptographically strong. Finally, the design of Ethos includes the notion

of stranger and anonymous users. This means that despite implicit network authentication,

Ethos hosts can interact with the Internet at large, even though some users will not be known

to Ethos before they connect.

5.2 Evaluation

In Chapter 9, we will present a series of case studies which demonstrate the effect of Ethos’

security properties on applications. Here we focus on Ethos’ authentication-related security

properties and compare them to other systems. We also describe the performance of Ethos’

authentication primitives, which we evaluated using the same computers described in Chapter 4.

We ran all of our POSIX comparisons with nscd, to minimize the latency of authentication

database queries.
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TABLE VII: Security features of Ethos authentication; BP denotes a best practice shared
with another OS, N denotes a novel feature, and the primary security property (as defined in
Chapter 1) that benefits from each feature is noted in parenthesis

Ethos Comparison

Authentication privilege escalation avoidance

A process p, running as user u1, cannot
influence the environment of an invoked
process p′, running as user u2. (P1)

N On POSIX, it is possible to set environ-
ment variables, reset the standard file de-
scriptors, etc. before executing a setuid-
bit program. Other OSs avoid the setuid-
bit, but have similarly fragile mechanisms:
SELinux provides a setexeccon system call
and processes can also transition to a new
domain upon execution based on their ex-
ecutable’s label. On Plan 9, one program
can execute another, and the invoked pro-
gram can change its privileges through the
use of factotum and the capuse device.

FdSend does not require superuser privi-
leges. (P6)

BP setuid requires root privileges, and a pro-
gram that runs as root until it calls setuid
can be attacked before transitioning to the
new user. Ethos resembles Plan 9, where
transitioning to a new user is a capability.

Owners of Ethos processes never change.
(P1)

BP POSIX process ownership is complex, as
defined by setuid, seteuid, and setreuid.
Ethos resembles Singularity, which also
has immutable process owners.

Local authentication

The authenticate system call ensures ap-
plications do not have access to secrets.
(P1)

N On POSIX, authenticating applications
have access to user secrets. Plan 9
provides auth userpasswd to validate a
password, but the application must read
the password itself and provide it to
auth userpasswd. Singularity likewise re-
quires sharing secrets with programs that
perform local authentication.
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Network authentication

Ethos performs mandatory network au-
thentication as a part of the import/ipc
system calls. (P1)

N On POSIX, Plan 9, and Taos, network au-
thentication must be explicitly invoked by
applications.

Ethos forbids Password-based network au-
thentication. Ethos uses only crypto-
graphic network authentication. (P1)

BP POSIX and Plan 9 allow both weak and
strong authentication techniques. Ethos
resembles Taos because both provide a sin-
gle, strong network authentication tech-
nique.

Isolation of secrets

The Ethos kernel naturally isolates secrets
required by both local and network au-
thentication. (P4)

N On Plan 9, factotum must be protected
from examination (e.g., by a debugger or
by inspecting the /proc filesystem) and
never swapped to disk. Furthermore,
Plan 9 applications have access to se-
crets when performing local authentica-
tion. On Singularity, applications perform
their own authentication.

Authentication database

Ethos provides for a strong trust model,
where each user can choose their TTPs,
and mutual authentication can take place
without symmetric TTPs. (P1)

BP Kerberos and hierarchical X.509 imply
symmetric trust amongst all parties.
Ethos provides a trust model that more
resembles SDSI or PGP.

A RAS compromise does not directly com-
promise user secrets. (P1)

BP The compromise of a Kerberos TGS com-
promises the secrets of all users; public-
key-based authentication is more robust.

A RAS cannot masquerade as another
user. (P1)

BP The Kerberos system has the ability to
masquerade as any user; public-key-based
authentication is more robust.

User identity

Ethos provides a coherent user identity
model that spans the entire Internet. (P1)

BP POSIX and Plan 9 must map 32-bit inte-
ger/string user identifiers to Internet iden-
tities in an ad-hoc manner. Ethos resem-
bles Taos, which also uses public keys as
user identifiers.
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Ethos is designed to isolate the resources
(e.g., files) of individual strangers, even
though their real-world identity is not
known. This requires no administrator in-
tervention, other than configuring a ser-
vice to permit strangers.

N Existing systems do not integrate system-
wide support for strangers.

5.2.1 Security

Table VII summarizes the authentication-related security features provided by Ethos. Ethos

addresses authentication privilege escalation, provides a simple-to-use authenticate system call

for local authentication, makes strong network authentication a mandatory protection provided

by import/ipc, carefully isolates user secrets, and provides a coherent user-identity model that

spans the entire Internet. Combined, these features minimize the possibility of application-

based subversion of authentication by removing the responsibility of performing authentication

from most applications. Indeed, no Ethos application receives any network message that has

not been authenticated by Ethos. Furthermore, Ethos’ RAS provides for a stronger trust model

than Kerberos or hierarchical X.509.

5.2.2 Performance

We measured the performance of setuid on POSIX with two programs, linuxSetuid and

linuxSetuidExec. To these we compared ethosFdSend, an Ethos program. We padded each

program to be approximately 800,000 bytes. We ran each benchmark several times, varying the

percentage of repeat users. On Ethos this means that at one extreme each call to fdSend invokes
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Figure 17: User transition rate: fdSend vs. setuid

a virtual process for a new user, whereas at the other extreme the benchmark repeatedly sends

a file descriptor to a single user’s virtual process.

LinuxSetuid repeatedly forks and in the child process transitions with setuid to a user/users

known at compile time (but resolved at run time to a UID using getpwnam) before exiting.

LinuxSetuidExec extends linuxSetuid by calling exec after setuid. This better isolates the post-

authentication logic and allows controls—such as SELinux—to restrict the server separately

from the distributor. This trades performance for robustness.

EthosFdSend is a program that measures the performance of fdSend, including both creating

the virtual process and sending it a file descriptor. ethosFdSend loops for a set period of time,

calling fdSend with some user on each loop iteration. Each invoked virtual process runs a loop

that continuously tries to fdReceive file descriptors.

Figure 17 displays the results of comparing linuxSetuid, linuxSetuidExec, and ethosFdSend.

This figure plots the performance in user transitions per second across a range of repeat user

percentages. From left to right, the figure depicts performance from the case of 2,000 iterations
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with no returning users (0%) to the case of a single user serviced 2,000 times (100%). When

ethosFdSend encounters a new user, Ethos creates a new virtual process; loading this program

is the primary source of latency. On the other hand, if a user returns, then the user’s virtual

process already exists, lowering latency.

In the worst case, where each user encountered is new, ethosFdSend was able to create

3,243 virtual processes per second. When all users are repeats (i.e., high user locality), its

throughput was 73,803 user transitions per second. EthosFdSend always outperforms linuxSetu-

idExec, and this performance advantage ranges from 113% to 2,573%. At approximately 25% re-

turning users, ethosFdSend outperforms linuxSetuid. The relative performance of ethosFdSend

to linuxSetuid ranges from 77% to 1,645%.



CHAPTER 6

TYPES

Type-safe programming languages leave many seams with respect to security: distributed

systems are often written in multiple languages, and their applications must be integrated.

Even for distributed applications written in a single language, it is beneficial to ensure a con-

sistent use of types. Programming language type systems primarily provide internal program

consistency. In contrast, OS-based types can constrain input and output to conform to program

expectations. Thus we are interested in constructing an OS which provides aid at the seams

between applications, which themselves are written in type-safe languages.

The most compelling reason for adding types to an OS is for security. Existing distributed

systems often act insecurely due to ill-structured input and output. Many applications dedicate

a significant amount of code to parsers (or in some cases decoders) that translate untyped data

into a language’s native form. Attackers often can craft input to exploit vulnerabilities in this

code. An attacker might also fool a program into generating data that it should not.

Traditional OSs are untyped and have untrapped errors with respect to applications. The

result is that applications written on top of such OSs can fail silently and in unpredictable

ways. Some OSs use type safety for internal consistency, to eliminate errors within the OS, or

at the OS interface. For example, dynamic checkers have been used to prevent buffer overflows

within kernels. Static type checkers have been used to regulate either internal RPCs or code

extensions.

112
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Implementing an OS and its applications in a type-safe language gives rise to new techniques

for providing protections. Java’s type system provides isolation within the JX OS [162]. JX OS

does not require a Memory Management Unit (MMU) and instead implements software-based

stack overflow and NULL reference detection. Fabric is also based on Java. Fabric labels objects

with their security requirements and provides distributed-system-wide, language-based access

and flow controls [163]. Singularity is written in Sing], provides SIPs, and uses linear types to

prevent shared-memory-related race conditions [164]. LISP and Haskell have also been used to

construct an OS kernel [165; 166].

SPIN allows applications to specialize the OS kernel using extensions [167; 168]. Type safety

allows SPIN to dynamically link extensions into the kernel while isolating other kernel data

structures. SPIN extensions are written in Modula-3. Exokernels likewise maximally embody

the end-to-end argument [29]. This has been shown to provide performance benefits, for example

by allowing applications to interact more directly with network interfaces [169]. Unikernels are

single-purpose microkernels written in the type-safe language OCaml and designed to run within

a hypervisor [170].

Ethos takes a different approach to type safety. We call Ethos’ type system Etypes. Pro-

cesses send data to other processes—either directly through IPC or indirectly through the

filesystem—in the form of Ethos objects, and objects are typed. Each object has at least two

representations, one in a running program and another external representation. Etypes con-

verts between external serialized objects and internal program memory and Ethos subjects all

process input and output to a type checker.
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Ethos’ type checker (§6.2.3) assures a property we call object integrity. We define object

integrity as:

(1) objects are read or written in whole, thus preventing short or long reads/writes [171],

(2) objects (external or memory) must be consistent with their type, and

(3) an object which is written by one program and read by another must produce an equivalent

object (see below).

A system call that writes/reads object o will either succeed if o is well-typed or return an

error without application side effects. Managing side effects in this way simplifies application

development, and is a strategy shared with other systems [172].

Our notion of object includes not only the object directly referenced (o0), but also those

objects which are reachable from o0 via pointers (o1, o2, . . . on). Given this numbering of objects,

the reconstituted object must consist of n objects o′0, o
′
1, . . . , o

′
n, such that the type of oi is equal

to o′i, and the value of oi is equivalent to o′i. Two objects oi and o′i are equivalent if (1) each

pointer field in oi that points to oj has a counterpart field in o′i that points o′j and (2) each

non-pointer field in oi is equal to its counterpart in o′i.

Ethos is the first OS to subject its system calls to a language-agnostic system-wide type

checker. Programmers define types in advance of use, and Ethos restricts (in conjunction with

authorization) what types programs can read or write. This limits the attacker’s ability to

introduce ill-typed data and reduces surprises—and therefore vulnerabilities—during applica-

tion reads. That Etypes is language-agnostic is significant because experience has shown that
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single-language or single-language-runtime systems are insufficient [84]. Etypes’ contributions

include:

C1 UUIDs for types without naming authorities (§6.2.4). Types are independently defined,

guaranteed not to conflict with types created elsewhere, and usable anywhere. This is

necessary for loosely coupled [173] distributed systems.

C2 Defining the types of files and IPC enables OS-based type checking of all process input

and output (§6.2.3).

C3 Tightly integrated programming language/system support (§6.2.2, §6.2.3). This integra-

tion reduces application code, eliminates type errors, and impacts the design of scripting

languages.

An application might still violate more sophisticated restrictions on object use. For example,

an integer might represent time, which should increase monotonically. Or, a type might contain

pointers but prohibit cycles. In Etypes, these considerations are left to applications—there

is an inherent trade off between generality and safety in a system-wide type system. We

call these higher-level semantics business rules. Although business rules are the responsibility

of applications, they can be described with a type’s Etypes annotations (§6.1.2). Thus an

application developer has documentation of the business rules expected to be enforced by his

application.
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6.1 Etypes

With Etypes, programmers specify types and RPC interfaces using Etypes Notation (ETN)

which, like XDR, is a data description language (§6.1.1). Etypes’ serialized wire format is

called Etypes Encoding (ETE). Etypes has three fundamental operations: encode, which takes

a programming language type and serializes it to an ETE; decode, which takes an ETE and sets

an appropriately typed programming language variable to its value; and check , which Ethos

uses to implement its type checker. Etypes addresses both the syntax and semantics of types

(§6.1.2).

6.1.1 Etypes Notation

ETN describes types using a syntax based on Go. Table VIII lists the ETN types, a syntax

example for each, and their corresponding ETE. Primitive types include integers (both signed

and unsigned), floats, and booleans. Composite types include pointers, arrays, tuples, strings,

dictionaries, structures, discriminated unions, any, and RPC interfaces. RPCs, unions, and any

types, warrant further description.

An Etypes RPC interface specifies a collection of RPC functions. Etypes RPCs are built

from stub and skeleton routines, similar to ONC RPC or CORBA. Although ETN specifies

RPC functions in a traditional way, their Etypes implementations are in fact one-way—they

do not have direct return values. Instead, a callee returns a value by invoking a reply RPC;

this supports both asynchronous and synchronous communication. One-way RPCs are a very

simple, yet entirely general, mechanism.
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TABLE VIII: Primitive, vector, composite, and RPC type ETN and ETE; UUIDs are encoded
as arrays of bytes; lengths are encoded as uint32; T is an arbitrary type; ‖ is concatenation.

Type ETN ETE

Integer

b byte
little-endian signed or unsigned X-bit integers, where X is 8, 16,
32, or 64

i intX

u uintX

Boolean b bool unsigned 8-bit integer

Floats
f float32

little-endian IEEE-754
f float64

Pointer p ∗T enc. method ‖ value

Array a [n]T values

Tuple t []T length ‖ values

String s string length ‖ UTF-8 values

Dictionary d [T]S length ‖ key/value pairs

Structure N struct {. . . } field values

Union M union {. . . } uint64 union tag ‖ value

RPC F(T0,T1,. . . ,Tn) uint64 func. ID ‖ args.

Any a Any type’s UUID ‖ value

Annotation
[‘text‘]

n/a: contributes to UUID
[see ‘filename‘]

ETE is implicitly typed, with two exceptions: unions and the any type. A union may be

instantiated to one of a specified set of types and an any may be instantiated to one of the set

of all types. When a program encodes an object as either, Etypes includes the object’s actual

type identifier (§6.2.4) in the encoding.

6.1.2 Syntax and semantics

ETN’s annotations informally describe semantics beyond types. Annotations

(1) contribute to a type’s UUID, binding syntax and semantics together;
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1 C e r t i f i c a t e s t r u c t {
2 s i z e u i n t 3 2
3 v e r s i o n u i n t 3 2
4 s e r i a l N u m u i n t 3 2
5 v a l i d F r o m [ 1 6 ] b y t e
6 v a l i d T o [ 1 6 ] b y t e
7 typeHash HashValue
8 s i g n a t u r e P u b K e y P u b l i c S i g n a t u r e K e y
9 r e v o c a t i o n S e r v e r [ 2 5 6 ] b y t e

10 s i g n a t u r e [ 1 2 8 ] b y t e
11 [ ‘ABA t r an s i t number in MICR form ‘ ]
12 bankId u i n t 3 2
13 [ ‘From account ; bank ’ s num. std . ‘ ]
14 f romAccount [ ] b y t e
15 [ ‘To account ; bank ’ s num. std . ‘ ]
16 toAccount [ ] b y t e
17 [ ‘ Transfer amount in US do l l a r s ‘ ]
18 amount u i n t 6 4
19 }

Figure 18: An ETN structure representing a bank transfer certificate

(2) differentiate structurally identical types; and

(3) enable integrity requirements beyond typing to be expressed (i.e., business rules).

Application programmers, administrators, and users refer to a type’s annotations to deter-

mine an object’s meaning, and thus annotations minimize the semantic-level difference [103] as

understood by Ethos users.

Consider the certificate type described in Figure 18, which is a digitally signed bank transfer

order. It contains eight certificate header fields and four certificate-specific fields: a bank ID,

two account numbers, and the transfer amount. Field names, i.e., bankId, contribute to type

UUIDs but are insufficient for detailed descriptions. Annotations narrow the semantic-level

difference, for example by describing the bankId field as an American Bankers Association
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transit number (at line 10). More complex annotations can be in an external file referenced by

an ETN specification.

6.2 Design

Targeting different programming languages presents both a challenge and opportunity. In

§6.2.1, we describe how Etypes remains programming-language-agnostic through the use of type

graphs, and we explain why multiple programming languages are needed to meet the various

requirements of Ethos in §6.2.2. We discuss issues related to the deep integration of Etypes

into Ethos in §6.2.3.

Etypes identifies its types using something we call a type hash—a UUID based on a crypto-

graphic hash. The type hash is a fully distributed mechanism, naming each type in a unique but

predictable manner, yet it does not require any naming authorities. Type hashes also support

the requirement of versioning. We describe the algorithm to compute type hashes in §6.2.4.

6.2.1 Type graphs

Given an ETN specification, a utility named et2g generates a programming-language-

independent type graph and its type hashes. A type graph is a directed graph containing

type descriptions as nodes and type references as edges. A type graph identifies types by uni-

versally unique hashes rather than the local names used in its ETN specification. Type graphs

are self-contained: for all types T in graph G, any type which T references is also in G. For

example, if a struct appears in a type graph, so do the types present in the struct’s fields.

Ethos forbids creating an OS object of type T unless T is present in the system’s type graph

(§6.2.3). Ethos uses the type graph to check types, and user-space utilities (such as eg2source
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TABLE IX: The contents of a type graph node; one node exists for every type specified

Field Description

Hash Type hash, the UUID for the type

Name Mnemonic for the type

Kind Integer representing the type’s kind (e.g., uint32, struct) from a fixed enumeration

Annotation Annotation for a type, struct field, or func.

Size Size, if the class is a fixed-length array

Elems
Tuple of type hashes representing: the type of a typedef, fields in a struct, type of
elements in a vector, parameters/return values for an RPC function, RPC functions in
an interface, or target of a pointer

Fields
Tuple of strings naming: the fields in a struct, parameters/return values for a function,
or RPC interface functions

as described below) also make use of the same graph. Type graphs themselves are stored as

ETE. Table IX shows the contents of a graph node and Appendix B describes type graphs in

more detail.

6.2.2 Programming language integration

Our type system is programming-language-agnostic; nevertheless it has profound impacts

on the programming languages Ethos supports. In particular, we discuss its impact in terms

of three different types of programming languages: unsafe, statically-checked programming

languages such as C; type-safe, statically-checked programming languages such as Go; and

type-safe, dynamically-checked programming languages.

For performance reasons, Etypes minimally relies on introspection. Instead, it uses eg2source

to generate code targeted to a specific programming language; given a type graph and output
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language, the tool generates code used to encode and decode types. For RPCs, eg2source creates

stubs and skeletons, similar to ONC RPC or CORBA.

6.2.2.1 Unsafe programming languages

Encode and decode require compile-time type definitions, due to C’s static typing. On the

other hand, types can be added to a running system, so the kernel’s use of check requires

that check be table-driven and thus able to verify unanticipated types. (Currently, encode

and decode are also table-driven, but unlike with check, this is not a requirement.) eg2source

generates tables which describe types, and a library called libetn walks these tables to encode,

decode, or check the types. Since libetn depends only on external malloc- and free-like functions,

it is easily integrated into both the OS kernel and programming language runtimes. Etypes

simplifies kernel code by subsuming tedious manual encode, decode, and verification routines

(Appendix E).

C is not type-safe. Using Etypes in C can have untrapped errors, such as a mismatch

between an ETN type and C variable. However, since the use of C on Ethos is limited to

system software, its use can be subject to more rigorous code inspection.

6.2.2.2 Type-safe, statically-checked programming languages

Go is type-safe and statically-checked; such languages are where ETN is aimed. Go is the

primary application-development language on Ethos. Each Go program contains only a fixed

number of compile-time-defined types. Our Go Etypes implementation directly generates per-

type encode/decode routines using eg2source, unlike C’s libetn- and table-based implementation.

The code for using an arbitrary type T is shown in Figure 19. The code in Figure 19a creates



122

1 e , d ← myTypes . I p c ( hostname , se rv i ceName )
2 e . WriteT(& t )

(a) Create a connection and transmit a typed value t; the programmer uses eg2source to generate both
myTypes.Ipc and e.WriteT from ETN definitions

3 e , d , u ← myTypes . Import ( se rv i ceName )
4 t ← d . ReadT ( )

(b) Accept a connection and receive a typed value t; the programmer uses eg2source to generate both
myTypes.Import and d.WriteT from ETN definitions

Figure 19: Go code to create/accept an IPC and read/write a value on Ethos; T is an arbitrary
type

an IPC channel and sends the value t of type T on it. The code in Figure 19b accepts an

IPC channel and receives an object of type T from it. The procedures Ipc, WriteT, Import,

and ReadT are generated by eg2source; thus the system calls necessary to implement these

operations (Chapter 5) are hidden behind typed APIs. In keeping with Ethos’ goal of minimizing

application complexity, Etypes calls requires no more application code than untyped I/O calls

in other OSs. However, Ethos calls do more, and this reduces the total amount of application

code.

6.2.2.3 Type-safe, dynamically-checked programming languages

Statically-checked languages are preferred for traditional applications, because they provide

higher integrity. However, utilities often benefit from dynamic types. Consider traversing a

filesystem recursively and displaying the contents of files; here types might not be known at

compile time. We are building eL, a dynamically-checked language that will integrate with

Etypes.
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TABLE X: Type-related system calls in Ethos

Miscellaneous

createDirectory create a directory bearing the given label and type

I/O

writeVar write an object to a file

readVar read an object from a file

write write an object to a streaming file descriptor

read read the next object from a streaming file descriptor

One of the great successes of Unix are the text-based utilities used to manipulate system

state. Since Unix was designed, these utilities have been diminished as types have become

richer. Generic utilities, which processes types dynamically, are essential to making Ethos

accessible to system administrators and others. Etypes will enable Unix-like utilities that

manipulate richer data.

6.2.3 Operating system integration

Here we discuss the integration of Etypes with Ethos. In particular, we describe how Ethos

associates a type with every streaming file descriptor or file and how Ethos uses such types to

regulate system calls. Table X lists the type-related system calls we describe here.

6.2.3.1 Type checking overview

Ethos verifies all network reads and writes as well as file or local-IPC writes using check.

Filesystem encryption ensures that file writes must go through the Ethos kernel. Ethos traps

ill-formed objects when writing rather than reading to aid correctness and problem diagnosis.

Such type checking, like authorization, prevents mismatches between processes.
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6.2.3.2 Associating types with objects

Every object in an Ethos filesystem directory must be of the same type, and every directory

has associated with it a type hash that determines this type. Since Ethos IPC services are

named by filesystem paths (we describe this in more detail in Chapter 8), directories determine

the types of both files and IPC connections. Thus a program can only read/write object types

corresponding to directories it is allowed to access. While this increases the number of directo-

ries, it has the advantage that Ethos can enforce the type-safety of file creation transparently—a

write does not need to specify a type. We provide an example Ethos program that accesses a

file in §6.2.5.

In Ethos, types must be specified only when creating a directory, a relatively infrequent

operation compared to file operations. Applications create directories with the createDirectory

system call, which accepts as parameters the parent directory dirFd, directory name, authoriza-

tion label, and typeHash:

createDirectory(dirFd, name, label, typeHash)

We expect directory creation to be primarily handled by administrative tools. If the direc-

tories are set up outside of a particular application, then the application and type policy are

completely independent. When a directory naturally contains various types, applying the any

or union types allow it to be used in the style of traditional directories.

6.2.3.3 Files

In Ethos, the contents of a file can be any Etypes object, from primitives (e.g., a 32-bit

integer) to complex entities made up of multiple objects, (e.g., a tree).
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Ethos provides a writeVar system call to write a file in its entirety—an Ethos file is not a

streaming object.

writeVar(dirFd, fileName, contents)

The inverse of writeVar is readVar.

readVar(dirFd, fileName)

Rather than directly use the above system calls, application programmers use encode/decode

interfaces (§6.2.5).

6.2.3.4 Seek

It may seem odd not to support seeking within files; after all, video files can span many

gigabytes. But this is necessary for simple failure semantics—an object is either of the correct

type and the readVar/writeVar system call succeeds or it is not and the operation fails with no

application side effects.

When designing Ethos, we had originally sought to provide seek. But its semantics became

complex when considering typed objects because

(1) objects have variable size and hence computing an offset to a well-formed sub-object is

not straightforward,

(2) the encoding is not normally visible to applications which only see decoded values, and

(3) errors would not be detectable until the whole file was read, complicating error recovery.

(3) is particularly troublesome, as an application would likely introduce side effects into the

system as it reads well-formed offsets, only to encounter an ill-formed offset later. At this point,

error recovery becomes (unnecessarily) difficult.
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Ethos applications store very large entities using directory streaming rather than very large

files, as we describe next. Because individual files must be read in their entirety, Ethos places

an upper bound on file sizes to conserve memory.

6.2.3.5 Streaming IPC and directories

In Ethos, IPC and directories are streaming entities, and Ethos enforces the type of each

write. The write system call sends data out on a streaming descriptor:

write(descriptor, contents)

Likewise, the read system call reads from a streaming descriptor. Again, the data must conform.

read(descriptor)

We provide an example of Ethos IPC in §6.2.5. Each read/write on an IPC channel read-

s/writes the next object. Objects are read from one side of an IPC in the same order they were

written to the other.

Streaming directories present a particular challenge, because their files must be named to

preserve their order. The write system call, when applied to a directory, creates a file named

with the current time; the read system call, when applied to a directory, reads the next file in

filename order. Thus Ethos streams over a directory of files (e.g., video frames), whereas each

file is non-streaming (i.e., read in its entirety).

6.2.3.6 Networking

Etypes takes care of many networking chores at the OS-level including endianness, align-

ment, parsing, and data value encoding, so that networking just works. Because network data

comes from a foreign system, Ethos applies check to network reads as well as writes. Higher-
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level interfaces also allow Etypes optimizations independent of application code. No Ethos

application can receive ill-typed data from the network, because first the data must satisfy

Ethos’ type checker.

6.2.3.7 Type graph

Ethos stores the system type graph in its filesystem at /types. Both kernel-internal types and

types specified in the course of application development are organized as collections, and both

kernel and application-specific collections are stored in /types/spec/c/, where c is a collection

name. Each file in collection directory c is a graph node, and each file’s name is the type’s hash.

Another directory, /types/all/, provides a single repository of type descriptions and represents

all of the collections in aggregate. In its current implementation, Ethos loads the directory

/types/all/ at boot time; we plan to modify Ethos so that it also reloads /types/all/ on demand

when an administrator installs a new type.

We envision that application type hashes will be installed by an Ethos packaging system

and will remain until the package and all of its nodes are removed. A type with hash h can be

removed from /types/all/ only when it is not present in any directory /types/spec/*/ and it is

not used as the type hash for any directory in the Ethos filesystem.

6.2.4 Type hash algorithm

ETN identifies types based on the hash of their syntactic and semantic specification, ensuring

each type has a UUID. The possibility of cyclic types complicates this process somewhat. For

example, the ETN in Figure 21a contains the cycle V → W → V . Here we describe the



128

T

V

W

U
Ef

Eb

Figure 20: A type graph partitioned into Ef and Eb

1 T s t r u c t {
2 aRef1 ∗U
3 aRef2 ∗V
4 }

6 U s t r u c t { a n I n t e g e r u i n t 3 2 }
7 V s t r u c t { l eadsToACyc le ∗W }

9 W s t r u c t { a C y c l i c R e f ∗V }

(a) ETN

h5 = hash (T s t r u c t { aRef1 ∗h2 aRef2 ∗h4 })

h2 = hash (U s t r u c t { a n I n t e g e r u i n t 3 2 })
h1 = hash (V s t r u c t { l eadsToACyc le ∗W })
h4 = hash (V s t r u c t { l eadsToACyc le ∗h3 })
h3 = hash (W s t r u c t { a C y c l i c R e f ∗h1 })

(b) Hash computation (h subscript indicates order)

Figure 21: Sample ETN structure containing the cycle V → W → V , along with its hash
computation sequence

algorithm typeHash which calculates a type hash for T when given a type graph that describes

T .

Let t be the type graph node corresponding to T and let G = (N,E) be a directed graph.

N is the set of non-primitive ETN definitions reachable from t, and E consists of the edges

[n, n′] where node n directly references node n′.

First, typeHash’s partition computes G′ = (N,Ef ), a Directed Acyclic Graph (DAG) rooted

at t and spanning G. (Given G, partition deterministically computes the same G’.) Thus Ef

contains all edges excluding those that would result in a cycle. The remaining backward edges,
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Eb = E−Ef , are those which would introduce a cycle. Figure 20 shows the partitioning of our

sample type.

We next describe how typeHash propagates hashes in Eb and Ef . Every node which refer-

ences another node will contain indirectly—through a series of intermediate hashes—or directly

the referenced node’s hash.

First, typeHash deals with the back edges using intermediary. intermediary visits back edges

e ∈ Eb, calculating the hash of the parent node of e and substituting this hash in e’s child node.

Included in each hash is the parent node’s ETN definition, including the annotations which

precede it or are contained within it. These substitutions are done in an order such that the

hash is always on a node which has not yet been re-written; this is ensured by noOut (n,Ef )

which means that n has no outgoing edges in Ef . Thus intermediary computes hashes for all

dependencies in Eb.

Next, typeHash uses collapse to compute type hashes for each e ∈ Ef , starting at the

nodes which have no out edges and chaining back toward t. After computing this hash, collapse

substitutes it for references to its type in other ETN definitions, removes e from Ef , and repeats

until Ef is empty.

Finally, typeHash computes t’s hash.

We now provide an example of how typeHash calculates the type hash for T . Initially,

Ef = {[T,U ], [T, V ], [V,W ]}. [W,V ] is a back edge and thus the only member of Eb.
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Algorithm 1 typeHash(t)

1: [Ef , Eb]← partition(t)
2: intermediary(Ef , Eb)
3: collapse(Ef )
4: return hash(t)

Algorithm 2 intermediary(Ef , Eb)

1: while ∃[n′′, n] ∈ Ef | noOut(n,Ef ) do
2: for all [n, n′] ∈ Eb do
3: h← hash(n′)
4: replace references to n′ in n with h
5: Eb ← Eb − {[n, n′]}
6: end for
7: Ef ← Ef − {[n′′, n]}
8: end while

The hash calculations are shown in Figure 21b. First, typeHash calls intermediary (Ef , Eb).

The only edge that satisfies Line 1 is [V,W ], and the only edge that satisfies Line 2 is [W,V ],

so intermediary calculates the intermediate hash h1 and replaces V in W ’s ETN with h1.

Next, typeHash runs collapse (Ef ). This calculates the hash for U , labeled h2, and propagates

this hash to T , replacing its reference to U with h2. Likewise, collapse hashes the definitions of

W and V to compute h3 and h4. At each step, typeHash replaces the child’s reference in the

parent’s ETN with a hash. Finally, typeHash computes T ’s type hash, h5.

Algorithm 3 collapse(Ef )

1: while ∃[n′, n] ∈ Ef | noOut(n,Ef ) do
2: h← hash(n)
3: replace references to n in n′ with h
4: Ef ← Ef − {[n′, n]}
5: end while
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1 TypeA s t r u c t {
2 W u i n t 3 2
3 V Any
4 }

(a) Example ETN that defines a structure type

5 a ← en . TypeA { u i n t 3 2 ( 0 ) , u i n t 6 4 ( 1 ) }
6 d ← s y s c a l l . O p e n D i r e c t o r y (”/ someDir /”)
7 e ← myTypes . WriteVarTypeA ( d , f i l eName , a )

(b) Go code to encode an any type to a file on Ethos; the programmer uses eg2source to generate
myTypes.WriteVarTypeA from the ETN definition of TypeA

8 d ← s y s c a l l . O p e n D i r e c t o r y (”/ someDir /”)
9 a ← myTypes . ReadVarTypeA ( d , f i l e N a m e )

10 s w i t c h a . V . ( t y p e ) {
11 c a s e u i n t 6 4 : // Of a c t u a l t y p e u i n t 6 4 .
12 }

(c) Go code to decode an any type from a file on Ethos; the programmer uses eg2source to generate
myTypes.ReadVarTypeA from the ETN definition of TypeA

Figure 22: Go code to encode/decode an any type to/from a file on Ethos

6.2.5 Sample code

6.2.5.1 Filesystem access

Figure 22 provides an example of encoding to and decoding from a file in Go. Figure 22a

defines TypeA, a struct containing an integer and any. Figure 22b demonstrates how to write

TypeA. Line 5 initializes a to a TypeA structure, Line 6 opens a directory, and Line 7 writes

a to a file named fileName in the directory. Attempting to write an ill-formed object relative

to the type associated with /someDir/ would cause a runtime error.
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Figure 22c provides the inverse. Here we decode to a native Go struct. Trying to decode

from a file using the wrong decode function (e.g., ReadVarTypeB) would result in a runtime

error.

6.2.5.2 Any types

We now describe the details of using the any type in Figure 22. The any type in TypeA

must be of an actual type known to Ethos. (Not shown is the error handling at Lines 7 and

9 should the type be unknown.) Encoding an any type encodes the type hash of the actual

type followed by the encoding of the actual type. Decoding an any type uses introspection to

identify the actual type (Line 10). Once the actual type is determined, the application can act

on it appropriately.

6.2.5.3 Remote procedure calls

Figure 23 provides an example of invoking an RPC. Figure 23a defines an example RPC

interface containing a single function, Add. The programmer must also implement iAdd and

iAddReply, and we list these in Figure 23b. The generated skeleton routine IHandle dispatches

to these functions.

Figure 23c provides the body of an application. It opens a network connection using Ipc

and initializes e and d to the returned encoder and decoder objects, respectively. These, in

turn, are wrappers for Ethos’ read and write system calls, and provide access to the generated

RPC stub/skeleton routines. The program next invokes e’s IAdd function, thereby making an

RPC request. Calling d’s IHandle function causes the program to wait for an incoming RPC

reply to IAdd. Attempting to write an ill-formed request relative to the type associated with
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1 I i n t e r f a c e {
2 [ ‘ Given two 32−b i t integers , respond with the sum of them . ‘ ]
3 Add ( i u i n t 3 2 , j u i n t 3 2 ) ( r u i n t 3 2 )
4 }

(a) Example ETN that defines an RPC interface

5 f u n c iAdd ( e ∗ Encoder , i 1 u i n t 3 2 , i 2 u i n t 3 2 ) {
6 e . iAddRep ly ( i 1 + i 2 )
7 }

9 f u n c iAddRep ly ( e ∗ Encoder , i u i n t 3 2 ) {
10 fmt . P r i n t l n (” R e s u l t : ” , i )
11 }

(b) Go code to implement RPC functions on Ethos; the programmer uses eg2source to generate
e.iAddReply from the ETN definition of I

12 e , d ← myTypes . I p c ( hostname , se rv i ceName )
13 e . IAdd ( 0 , 1)
14 d . H a n d l e I ( e )

(c) Go code to invoke the IAdd RPC and handle the response on Ethos; the programmer uses eg2source
to generate myTypes.Ipc, e.IAdd, and d.IHandle from the ETN definition of I

Figure 23: Go code to invoke an RPC and handle the response on Ethos

serviceName will cause a runtime error, and Ethos will not deliver ill-formed responses to the

application.

6.2.6 In brief

Etypes integrates tightly into both the Ethos OS and the programming languages used to

write Ethos applications. On Ethos, programmers declare types using ETN, which supports

primitive, vector, composite, and RPC types. Applications make use of these types through

the use of code generators. Etypes code generators create language-specific type definitions and

procedures to read and write types from/to files and IPC channels.
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OS integration begins with type UUIDs, which we call type hashes. For each type, there

exists a deterministic type hash which can be calculated from the type’s definition. At boot time

and on demand, Ethos loads a type graph, which describes the types available to the system.

Ethos uses its type graph to verify all application reads and writes: Every directory in the

Ethos filesystem has a type hash associated with it, and no application on Ethos is permitted

to read or write an object that is ill-formed with respect to the target directory’s expected

type. As IPC services have corresponding filesystem nodes, this restriction also applies to IPC

and network reads and writes. Thus Ethos preserves object integrity and simplifies application

error handling.

6.3 Evaluation

Our evaluation focuses on the security effect of integrating Etypes with Ethos. We first

consider how Etypes addresses semantic-gap attacks, addresses parsing bugs, and conserves ap-

plication code. We summarize this in Table XI, and we provide additional analysis in Chapter 8

and Chapter 9 after we describe Ethos authorization. Our performance measurements include

microbenchmarks of our C and Go implementations; here we compare our results to XDR/ONC

RPC and JSON. Finally, we present a more realistic use case, analyzing the performance of

a messaging system we wrote for Ethos. Although Ethos has security over performance as

a design goal, its performance must be acceptable—we show that Etypes performs well. We

evaluated the performance of Etypes using the same computers described in Chapter 4.
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TABLE XI: Security features of Etypes; BP denotes a best practice shared with another OS,
N denotes a novel feature, and the primary security property (as defined in Chapter 1) that
benefits from each feature is noted in parenthesis

Ethos Comparison

Ethos binds a type to each OS object (e.g., files
or IPC connections). (P3)

N Existing systems use weak mechanisms such as
filename extensions, magic values, or port num-
bers to determine the type of an OS object.

Ethos either preserves object integrity on all
reads and writes, or the operation fails with no
side-effect. (P3)

N Existing systems allow applications to read or
write arbitrary, possibly ill-formed data. For
example, OSs do not generally restrict network
communication to a particular application-
layer protocol, instead depending on applica-
tions to reject ill-formed requests.

Ethos discourages the use of unstructured data
system-wide, instead providing convenient en-
coders and decoders. (P3)

N Existing systems often pass unstructured
strings; this requires parsing, which leads to
semantic-gap attacks, werewolf attacks, vulner-
able parsers, or injection attacks.

6.3.1 Semantic-gap attacks

Buccafurri et al. presented the Daĺı attack in the context of digital signatures [105], and

Jana et al. presented chameleon attacks in the context of anti-virus software [174]. In these

attacks, the type is unknown and is therefore determined in an ad hoc, and sometimes erroneous,

manner. Ethos provides countermeasures for both attacks. The type of each Ethos object is

known (§6.2.3), every application and utility interprets an object consistently by its type, and

each type has a universal meaning defined by its annotations.

Consider two types t1 and t2 with identical structure; they nonetheless have different hashes

in Ethos due to their semantic description (§6.1.2). An Ethos application commits to a type

when it reads or writes data as an Ethos object, and Ethos enforces the type it chooses. Of

course, an application could erroneously swap data of type t1 for t2, for example, by reading

data from a file of type t1 and then writing the data to a file of type t2. This error is unavoid-
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able through structural type checking alone, but Ethos’ authorization system can restrict the

application so that it can only write Ethos objects of type t1. Even in these cases, there is no

possibility of encoding errors since t1 and t2 are identically coded.

Certificates present a particular example of the interaction between Ethos authorization and

Etypes. Without Etypes, an attacker might trick a flawed program (such as a user-downloaded

game) to sign a bank transfer request with a user’s secret key. We discuss how Ethos inte-

grates types into its certificate system and authorization controls in Chapter 7 and Chapter 8,

respectively.

6.3.2 Parsing vs. encoding/decoding

Direct attacks on parsing are common, because parsing is complex and deals with untyped

input streams, often directly generated by an attacker. Experience shows that unnecessary

parsing leads to vulnerabilities. For example, the Google Chrome browser’s SVG, PDF, and

H.264 parsing code has contained vulnerabilities [175; 176; 177].

Parsing is also vulnerable to more subtle attacks. Jana describes the difficulty of writing

parsers that prevent werewolf attacks [174]; for anti-virus, the difficulty is that virus detectors

and applications can parse data differently. For example, Jana showed that many antivirus

scanners will not scan a ZIP-compressed file whose valid data is preceded by a number of garbage

bytes. On the other hand, the unzip utility will decompress such a file, possibly producing an

executable infected with a virus. Similar difficulties are encountered when defending against

Cross-site Scripting (XSS) attacks because a server’s input validation must anticipate how a

client browser will parse HTML [178].



137

Ethos takes a different approach which was inspired by applications such as qmail which

avoid parsers [179]: Ethos prefers decoders, types are enforced by the OS, and for each type

only a single decoder exists.

In Ethos, there are no untyped input streams—Etypes translates between external and in-

ternal representations while being subjected to a type checker. Thus applications know their in-

put is well-typed. Furthermore, Etypes’ encoders/decoders must be generated from a high-level

ETN description. Only one encoder/decoder generator (eg2source) is needed per programming

language, and each type has a single encoder/decoder procedure shared across all applications.

Formal methods can ensure Ethos’ generators are correct, removing the possibility of the direct

attacks that arise with parsers. Consistent encoding and decoding removes the opportunity for

the more subtle class of attacks described above. We describe in Appendix E another benefit of

Etypes and eg2source: a large reduction in the lines of code used by the kernel and applications.

6.3.3 Injection attacks

In SQL- and OS-command injection attacks, an attacker influences an unstructured string

that is later parsed and acted upon by another system component [180]. For example, a näıve

program might receive a file path from the network and add this path to a command line sent

as input to a Unix shell. An attacker could craft a path that contains the ‘;’ character, which

could cause the shell to execute arbitrary shell commands that the attacker embeds in his path

string. Such injection attack vulnerabilities remain prevalent [181].

Using Etypes to read and write structured data makes it unnecessary to combine data (i.e.,

the path input described above) with control strings (i.e., the ‘;’ character). On Ethos, a shell
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command or SQL query would be encoded as a particular type, instead of as unstructured

text. This removes the need for fragile sanitization routines and complicated character escape

sequences. The facilities provided by Etypes are more general than, but resemble, prepared

SQL statements [182].

6.3.4 Encoding density

The use of the type hash to identify an any type means that it takes 64 bytes to explicitly

encode the actual type associated with an ETE. For types other than any, ETE’s use of

implicit encoding results in a minimal encoding size. There are a few exceptions, where we

made decisions affecting overhead. ETE encodes NULL pointers with a single byte, and the

overhead for other pointers is also a single byte. Arrays need not have their known length

encoded, but tuples, strings, and dictionaries encode their length as a 32-bit value. (Choosing

a 32-bit length is possible due to the integration of Etypes and Ethos—the maximum Ethos

object size is 232 − 1; larger constructions can exist as a collection of objects as discussed in

§6.2.3.) RPC calls contain a procedure ID as overhead, and discriminated unions contain a 32-

bit tag. ETE is not 32-bit aligned; thus it can encode values of less than 32-bits more efficiently

than XDR.
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Figure 24: Etypes microbenchmarks: encode/decode to/from memory buffer
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6.3.5 Performance

6.3.5.1 Microbenchmarks

We first analyzed performance by measuring the speed at which our implementation can

check, encode to, and decode from a memory buffer (Figure 24). We wrote a series of mi-

crobenchmarks based on a collection of types, including primitive, vector, and composite types.

We tested the speed of encoding and decoding using Etypes, XDR, and JSON. We also mea-

sured the speed of type checking. An average for each test of encoding, decoding, or checking

is provided.

Figure 24 depicts our results. For scalar types, XDR is the fastest as it benefits from

mandatory 32-bit alignment. XDR also encodes pointers faster than Etypes, but this is because

Etypes supports cyclic and shared objects. JSON performs the slowest due to its use of runtime

type introspection. Etypes’ encoding of vectors containing scalar types benefits in the common

case of little-endian architectures. C Etypes encoding is 0.136–22.823 (geometric mean: 1.155)

times faster than XDR, and its decoding is 0.180–33.084 (geometric mean: 1.130) times faster

than XDR. Verification is a common operation in the Ethos kernel, and its speed is 1.378–

9.568 times faster than C Etypes encoding.

Next, we analyzed the performance of RPCs. Here each benchmark is made up of a client

and server, running on a single computer. The client invokes a remote call that transfers an

instance of a type to the server and the server sends it back to the client. For each type,

this process is repeated a number of times. To minimize the effect of network latency, each
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Figure 25: Etypes microbenchmarks: remote procedure calls

Etypes benchmark pipelines 20 RPCs and the ONC RPC/JSON benchmarks employ 20 client

processes.

Figure 25 shows our results. JSON has the slowest performance, again due to introspection.

In RPC benchmarks, the network latency becomes an important factor affecting performance.

Etypes’ asynchronous call model enables more efficient pipelining, reducing the effect of network

latency and increasing performance. Go Etypes outperforms ONC RPC in all benchmarks

except for the 32-bit integer array test and the 32-node tree. C Etypes likewise performs well:

the two cases where C Etypes is outperformed by ONC RPC are the Certificate and 32-node

tree. Ethos’ encrypted networking stack is built on C Etypes RPCs; we presented performance

measurements of this in Chapter 4.
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Figure 26: Performance of the eMsg messaging system

6.3.5.2 eMsg performance

To illustrate the use of Etypes, we wrote eMsg, a messaging system for Ethos. eMsg is

able to send and receive a message whose type is defined in ETN and invoke RPC functions

generated by eg2source.

We compare the performance of eMsg to Postfix. Since Ethos encrypts and cryptographically

authenticates all network connections, we configured Postfix with TLS encryption and client

certificate authentication. We wrote a client program that connects to Postfix using TLS-

protected Simple Mail Transfer Protocol (SMTP) over a Unix socket and sends 2,500 emails

to the server.

eMsg provides a client/server architecture roughly similar to Postfix. Both the client and

server perform type-related work: the client-side kernel must check the well-formedness of
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messages sent to the network and the server-side kernel must do the same for received messages,

as well as check the data that the receiver writes to a user’s spool directory.

Figure 26 shows the performance of eMsg and Postfix, over three different message sizes.

Each bar consists of two parts: the message itself and its overhead. We modified eMsg so that

it incurred an overhead roughly equal to Postfix: 1,229 bytes. (eMsg’s overhead is actually

smaller because it does not use Internet Message Format (IMF) headers.) For each message

size, eMsg was faster than Postfix.



CHAPTER 7

CERTIFICATE SIGNING

We introduced certificates and their use for authentication in Chapter 2. Recall that a

certificate is some digitally signed statement. (What is more precisely an identity certificate

is often referred to as a certificate.) Certificates are a key component of robust distributed

systems, because they can:

(1) allow a service reasonable assurance that a request came from a certain user and

(2) allow a user to prove that a service performed a fraudulent action without his approval.

Traditional authentication does not provide (2), so certificates are stronger than traditional

authentication.

Recall that we described the requirements of a robust certificate system in Chapter 2, namely

that such a system must:

(1) provide a correspondence between users and their private cryptographic keys,

(2) ensure adequate isolation of private cryptographic keys,

(3) guarantee that the system signs only what the user intends, and

(4) guarantee that the signer and relying party share a single meaning for a given certificate.

Existing systems do not sufficiently aid a user in maintaining these requirements. At issue are

the many different software and hardware components involved in creating signatures. Each of

these components introduces vulnerabilities.
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We now describe how the design of the Ethos certificate system more strongly satisfies

the requirement of non-repudiation. The use of certificates by Ethos applications adds to the

implicit authentication provided by Ethos’ networking system calls. Ethos certificates provide

the following contributions:

• Stronger isolation properties, made possible by a sign system call. Moving the signature

operation into a system call means that applications never need direct access to secret

signing keys, and thus strengthens the isolation of these keys.

• A type system that allows the system to bind certificates to a fixed semantic meaning.

• An authorization framework that can restrict what a given application may sign. We call

this certificate-set authorization and will discuss it more in Chapter 8 and Chapter 9.

The header shared by all Ethos certificates is shown in Figure 27. If a type definition begins

with fields matching the certificate header, then that type defines a certificate sub-type. Each

certificate contains the following fields:

Size The size of the certificate header and its payload,

Version a version field that facilitates future modifications of the certificate format,

Serial number a serial number for use with revocation,

Valid From, Valid To fields that identify the time period during which the certificate is valid,

Type hash the type hash,

Public Key the public key that will validate the certificate’s signature,
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Size, version, and serial number︷ ︸︸ ︷
Valid from Valid to Type hash

Public key Revocation server Certificate signature

Figure 27: Ethos certificate header format; Ethos populates the fields highlighted in gray
while servicing a sign system call

Revocation Server the server that maintains a certificate revocation scheme, and

Certificate Signature the certificate’s digital signature.

Following the certificate header is the certificate body which may contain arbitrarily defined

fields. While certificate headers have the same structure across all certificates, certificate bodies

are specific to the type of certificate. Certificate bodies contain typed fields, and can be viewed

in a manner analogous to a paper form’s fields. Non-variable data is never stored in a type field;

instead it is contained in the semantic description that contributes to the corresponding type

ID. The semantic description describes the certificate and its fields; it is bound to a certificate

sub-type as described below.

When servicing a sign system call, Ethos checks the type of the output directory, and sets the

certificate’s type hash to match before signing it on behalf of the user. This binds a meaning to

the certificate (which might otherwise have an identical structure to another), and prevents two

certificates with identical syntax but different semantics from being interchanged. Of course,

a system could alternatively maintain different keys for different purposes, but eventually two

seemingly separate certificates will need to be bound to the same person.
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Certificate types—and the semantic description bound to them—serve to establish a pre-

defined logic between the signer and the relying party, decreasing the semantic-level difference

between the two parties. Properly designed types also reduce syntax-level differences by en-

forcing a canonical representation.

7.1 Interface

The sign system call takes as parameters a directory file descriptor and file name.

sign(dirFd, filename)

If the authorization policy permits the sign operation, Ethos adds the directory’s type to the

certificate, populates the other fields in the header (except for the validity period), signs the

file, and writes it back to the filesystem.

verify(dirFd, filename)

The verification process consists of a library call that makes various system calls. Like the sign

system call, the verify library call takes as parameters a directory file descriptor and file name,

but verify returns a status indicating whether the certificate has a valid signature.

The library call verifies that the certificate has not expired, the signer’s credentials have not

been revoked, the certificate’s syntax hash matches the expected type, and the digital signature

on the certificate is valid. The library call also logs that the system received the certificate; at

a minimum, Ethos maintains this log for the lifetime of the certificate.

7.2 In brief

Ethos is designed to provide stronger properties of certificate non-repudiation than exist-

ing systems. Applications on Ethos sign certificates by invoking the sign system call. Ethos
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certificates have a consistent header format, and Ethos binds robust semantic descriptions to

certificates without increasing their size. Ethos does this by adding a type hash—along with

the signer’s public key and the revocation server—to the certificate before signing it. Ethos

also regulates the types of certificates an application may generate by enforcing certificate-set

authorization.

7.3 Evaluation

Here we focus on Ethos’ certificate-related security properties, which we will further evaluate

along with certificate-set authorization in Chapter 9. We also compare the performance of our

implementation of certificates in Ethos to OpenSSL on Linux. We were especially interested to

see how a system-call-based signature would perform relative to a user-space implementation.

7.3.1 Security

Table XII summarizes the certificate-related security features provided by Ethos. Ethos

isolates cryptographic keys; protects the integrity of important certificate fields; and provides

a means to couple the meaning of a certificate with the certificate, reducing the semantic gap

between signers and relying parties.

7.3.2 Performance

We evaluated the performance of Ethos’ certificate system using the computers we described

in Chapter 4. OpenSSL’s speed utility provided the basis of our experiments. We used speed to

measure OpenSSL’s RSA implementation. Note that 1,024-bit RSA is considered unsafe today

[183], and that 3,072-bit RSA is equivalent to current Ethos 128-bit security.
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TABLE XII: Security features of Ethos certificates; BP denotes a best practice shared with
another OS, N denotes a novel feature, and the primary security property (as defined in Chap-
ter 1) that benefits from each feature is noted in parenthesis

Ethos Comparison

The Ethos kernel naturally isolates crypto-
graphic keys due to the use of the sign system
call. (P4)

N Typically, applications perform cryptographic
signatures and thus have access to crypto-
graphic keys. Here a compromised application
could reveal a secret key.

The Ethos kernel fills in several certificate
fields, most importantly ensuring the certifi-
cate’s type hash and revocation server cannot
be incorrectly set. (P4)

N Typically, the contents of a certificate are set
wholly by an application.

Ethos certificates have a single meaning, de-
fined by the certificate’s type. (P4)

N Typical certificate systems are susceptible to
semantic-gap attacks, because certificates are
not systematically bound to a semantic mean-
ing.

TABLE XIII: Signature measurements

System Signatures per second

Ethos 7,692

OpenSSL RSA (2,048 bit key) 483

OpenSSL RSA (4,096 bit key) 74

OpenSSL DSA (2,048 bit key) 1,876

System Verifications per second

Ethos 6,894

OpenSSL RSA (2,048 bit key) 18,111

OpenSSL RSA (4,096 bit key) 5,066

OpenSSL DSA (2,048 bit key) 1,517
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Table XIII describes our results from comparing the signature rate of Ethos to OpenSSL.

In all measurements, Ethos outperforms OpenSSL when performing signatures. We attribute

this primarily to the speed of the NaCl library. Ethos verifies signatures slower than OpenSSL

2,048 RSA, but this is due to the difference between RSA and NaCl’s Ed25519 algorithm (also

note that NaCl provides 128-bit security, whereas 2,048 RSA is equivalent to 112-bit security).

Our results demonstrate that Ethos maintains competitive performance despite moving the sign

operation into a system call.



CHAPTER 8

AUTHORIZATION

Like SELinux [184], Ethos provides mandatory authorization controls which do not require

that applications call a Taos-like Check procedure. Each Ethos process acts as a subject and

bears an immutable user and a label. The user is inherited from the process’ parent or set as

a result of some call to fdSend (as described in Chapter 5), and Ethos reads the label from the

process’ executable in the filesystem. Objects—including files, directories, and IPC services—

bear a group, owner, and a label. Ethos stores these attributes along with the object in its

filesystem. Ethos uses this information while governing processes, which use system calls to

access objects. In general, Ethos permissions are specified in two ways: (1) an authorization

specification describes the processes which can exercise a given permission on an object, and

(2) certain directory prefixes confer certain permissions on the objects they contain.

Unlike SELinux, Ethos’ authorization system was designed along with its system calls, so

authorization is intertwined in the semantics of Ethos’ system calls. This serves to keep Ethos’

authorization system simple, whereas SELinux is complex [36; 37]. In networking, this is most

apparent in four properties:

(1) Ethos has fewer system calls than Linux (we discussed how Ethos reduces POSIX’ sockets,

pipes, etc. to import and ipc in Chapter 5).
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(2) Ethos restricts applications so that they can only read, write, and sign permitted, well-

formed types.

(3) Services are named textually instead of by a transport-layer port number.

(4) Ethos cryptographically authenticates the remote principal making a network connection

request, and Ethos subjects such principals to its authorization policy before an applica-

tion’s call to import will complete and return values to user space.

Because Ethos directories contain objects of only a single type, and Ethos restricts the

directories an application may write to, Ethos restricts which types an application can read,

write, or sign. Such restrictions apply equally to files and application-layer protocols (i.e., the

Etypes RPC an application is permitted to use). Thus Ethos restricts what an application

may read, write, and sign whereas SELinux merely restricts where an application may read and

write.

Ethos uses filesystem paths to name services. Passing s as the service name argument to

advertise or ipc corresponds to the filesystem path /services/s/s, and the label on this path

implies access controls. Unlike TCP/UDP port numbers, which have a very small name space

and thus must be reused (e.g., ports 80 and 443 are used to provide very many different services),

Ethos network service names are unbounded. Hence each name is one-to-one with a service.

Ethos can also differentiate security levels by service name, so that, for example, Top Secret

mail might use a different name than unclassified mail.
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Ethos governs the way processes may interact with networking, but, due to the key differ-

ences listed above, does so in a more abstract way than SELinux. Ethos authorization affects

which process may:

(1) make an outgoing connection to a service on a given remote host, where a service implies

a particular well-formed application-layer protocol;

(2) accept a network request from a given remote user (whether known or anonymous) for a

given service;

(3) send a file descriptor to a virtual process running a given program as a given user; and

(4) read/write file descriptors, where the data is well-formed with respect to a permitted

type.

The interaction between distributors and virtual processes warrants special consideration.

Ethos’ authorization specification restricts virtual processes to accessing file descriptors bearing

particular labels (i.e., corresponding to a certain service in the case of networking) and users.

As discussed in Chapter 5, there are two patterns found in Ethos:

• Remote-user virtual processes owned by u may only read file descriptors owned by u.

• Arbitrary-user virtual processes owned by u may read file descriptors of any u′.

In the first case neither the distributor nor the virtual process (which is restricted at the system

level based on the remote user) require a code audit to ensure the proper use of Ethos’ security

services. In the second case it is necessary to audit the distributor. The resulting work is quite

modest: almost all virtual processes are expected to be remote-user, and distributors are quite
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TABLE XIV: The authorization controls show how Ethos restricts each component; system
administrators must audit each component as indicated (see Chapter 9)

Type Component Relevant authorization controls Audit required

remote-user distributor Accept network request for service

based Send fd to virtual process

virtual process Process owner = remote user

Commensurate access for user/program

client Make outgoing connection to service

arbitrary-user distributor Accept network request for service

based Send fd to virtual process Confirm fdSend speci-
fies correct recipient

virtual process Commensurate access for user/program

client Make outgoing connection to service

small (on the order of 100 lines). Directory permissions allow only administrators to create

virtual process/distributor executables. We summarize network service audit requirements in

Table XIV.

8.1 Authorizing system calls

We now discuss how the Ethos authorization policy interacts with with Ethos’ system calls

to fulfill its controls. Ethos integrates both Discretionary Authorization Control (DAC) and

MAC in its Language for Expressing Authorization Properties (LEAP). LEAP regulates the

operations subjects can invoke on objects. The LEAP permissions we will discuss here are:
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c create a file

r read a file descriptor

w write a file descriptor

x execute a program

sign sign a file

advertise advertise/import a service

ipc ipc to a service

fdS send a file descriptor to a process

A LEAP unary permission has the following form, where perm is a permission; l is an object

label; p is a program label; and G is a group, defined by a set of user public keys:

perm(l) = [p,G]

For example, a program labeled p, running as the user identified by the public key pku ∈ G can

read files labeled l:

r(l) = [p,G]

For our discussion here, we simplify the conjunction involving the user u

perm(l) = [p,G] ∧ pku ∈ G

to the more concise

p, u→ perm(l)
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to mean that p, when running on behalf of u, has perm(l). In specifications, group names are

written gs.G. To support DAC semantics a special group notation, gs{$}.G, indicates a group

specific to the owner of the object in question.

LEAP also specifies two restrictions, which resemble permissions. These are in, a restriction

on the users who may connect to a local service, and out, which restricts the remote hosts that

may provide a service to local programs. Thus in governs advertise/import and out governs ipc.

Both of these restrictions apply to labels, but describe host groups (out) or user groups (in)

instead of subjects. For example,

in(l) = [U ]

restricts services labeled l so that they may be accessed only by users with public keys in

U . Alternatively, an administrator may set in or out to a wildcard, thereby removing any

restriction on who may connect to or provide a service. Thus administrators use wildcards

to permit stranger and anonymous users to connect to services. We will now describe the

permissions needed by various network-related system calls.

On the client side, an administrator may restrict to which services and hosts a given subject

may connect. As we have discussed, networking-related permissions are derived from filesystem

nodes, contributing to consistent authorization mechanisms. (Recall that the label on the

filesystem object /services/s/s applies to the call ipc (s, host).) Within an enterprise, it may be

appropriate to restrict connections to hosts that share a tightly-coupled authorization policy.

Elsewhere, an administrator can choose to limit connections to trusted service providers. In
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either case, applications should be permitted only to connect to the services for which they

were designed, because other connections might be the result of an application compromise.

An outgoing connection to the host h for the service with label l requires:

p, u→ ipc(l) ∧ h ∈ out(l).

That is, to connect to a service labeled l, a program p, running as user u, must have been

granted the ipc permission on that service. Furthermore, the server host h must be in the

group of hosts permitted on the client to provide the service labeled l.

On the server side, Ethos restricts advertise and import. Ethos performs user authentication

at the system layer; if import returns, Ethos has authenticated the remote user and he is

authorized to connect to the given service. As discussed in Chapter 5, authorizing strangers

allows even previously unknown users to maintain a unique user ID. To advertise the service

labeled l and import a connection from the remote client user uc requires:

advertise: p, u→ advertise(l)

import: p, u→ advertise(l) ∧ uc ∈ in(l).

To fdSend a file descriptor to a program labeled l requires p, u→ fdS(l). The fdReceive call

requires no special permission. Any virtual process may receive a file descriptor using fdReceive,

but successive reads and writes are subject to access controls.
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The read and peek calls require:

p, u→ r(l).

The write call requires:

p, u→ w(l).

The sign call requires:

p, u→ sign(l).

8.2 In brief

We summarize the security features of Ethos authorization in Table XV. Ethos provides

MAC, regulating the access of user-application pairs to OS objects. The system call interface

that Ethos provides to applications is more abstract and provides more implicit protections

than existing systems. This gives rise to a simpler, more abstract authorization policy.

Ethos can directly consider remote client users when making authorization decisions, be-

cause Ethos performs network authorization at the system level and all network users—including

strangers and anonymous users—have a deterministic UUID. The authorization policies for net-

work applications are simple; they either allow access by a set of users or further allow stranger

and anonymous access. Ethos requires that network servers be implemented using either the

remote-user virtual process or arbitrary-user virtual process model.

Due to the integration of Etypes, Ethos is also able to regulate the types of objects—

including certificates—that applications may read and write. On Ethos, neither unauthorized
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nor ill-formed network requests ever make it to an application, because both are trapped by

the OS.

TABLE XV: Security features of Ethos authorization; BP denotes a best practice shared
with another OS, N denotes a novel feature, and the primary security property (as defined in
Chapter 1) that benefits from each feature is noted in parenthesis

Ethos Comparison

Ethos provides MAC. BP Ethos resembles existing MAC systems
because Ethos considers both the user and
program running when making authoriza-
tion decisions.

Ethos’ simpler system calls with more ab-
stract semantics and implicit protections
give rise to a simpler, more abstract au-
thorization policy.

N Existing systems have complex system call
interfaces and require that applications
implement their own basic network pro-
tections. Existing MAC systems are cum-
bersome because they reflect an OS’s in-
terface design.

Ethos can directly restrict remote users
because Ethos performs system-level au-
thentication.

N Existing systems require coordination be-
tween the system-wide authorization pol-
icy and application-level network authen-
tication.

Ethos provides certificate-set authoriza-
tion which regulates the types of certifi-
cates that an application may produce.

N Existing systems can restrict access to
cryptographic signature keys, but do not
further regulate which statements appli-
cations that have access to the keys may
sign.



CHAPTER 9

CUMULATIVE EVALUATION

With Ethos’ authorization system defined, it is now possible to further evaluate the security

properties of Ethos. We first analyze the code required for network security in existing systems

(§9.1). We then analyze Ethos’ individual network security properties (§9.2) and their effect on

common security holes. Next, we present four case studies: remote-user virtual process (§9.3),

arbitrary-user virtual process (§9.4), local authentication (§9.5), and certificate-set authoriza-

tion (§9.6). Each study shows how applications benefit from Ethos’ system call interface, and

how the authorization of applications is simplified by this interface’s implicit protections. We

also analyze system administration, comparing traditional application-by-application security

properties to Ethos’ security settings, which apply to all applications (§9.7).

Ethos user space is coded in Go, but we compare mostly to POSIX C code. Although this

is an apples-to-oranges comparison, two things should be kept in mind: First, in all networking

code, Ethos applications require zero lines of code for many security services vs. thousands in

POSIX. Second, we normalize this overhead by presenting the ratio of C authentication code

to C application size.

9.1 POSIX attack surface

Application development on POSIX requires significant code and care to ensure the appli-

cation safely uses networking. We discussed this in Chapter 1, noting that Dovecot contains
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approximately 15,000 authentication LoC, 8% of its total C codebase; Apache’s authentication

modules total over 1,800 LoC; mod ssl totals 11,703 LoC; and the third-party mod auth kerb

contains another 1,500 LoC. Thus POSIX requires a large amount of security-sensitive ap-

plication code, increasing the application attack surface. The likelihood of application-based

subversion makes it more difficult for administrators to ensure that the applications they install

have the requisite protections.

Experience shows that application developers cannot cope with the complexity that arises

on POSIX. The US National Vulnerability Database [185] identified 699 authentication-related

flaws in the last three years, 5% of the total reports. The same source reports 87 vulnerabilities

in, or in the use of, OpenSSL, GnuTLS, and NSS. Studies have shown that these TLS libraries

are routinely misused, including by a banking application supplied by a major US bank [11; 12].

9.2 Ethos Protections and the CWE/SANS Top 25

Ethos is differently layered: protections are transparently provided by the OS, reducing

application-based subversion. Recall that we introduced protections P1–P6 in Chapter 1; these

inescapable protections address several bug classes which result in security holes. Ethos defeats

six error classes, or 24% of the CWE/SANS’ Top 25 Most Dangerous Software Errors [181],

and Ethos mitigates another seven error classes. Table XVI and Table XVII show how Ethos’

protections address many of the Top 25 vulnerabilities.

9.3 Remote-user virtual process case study

Recall that we described resh, our remote shell utility, in Chapter 3. Here we use resh to

evaluate Ethos’ network security mechanisms with respect to remote-user virtual processes.
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TABLE XVI: Common vulnerabilities defeated by Ethos protections

Vulnerability Protection

Missing authentication for critical function P1, P6

Use of hard-coded credentials P1

Broken/risky cryptographic algorithm P1, P2, P4

Allow excessive authentication attempts P1

Use of a one-way hash without a salt P1, P2

Missing encryption of sensitive data∗ P2
∗All data on Ethos is either encrypted (e.g., with network and disk writes) or isolated using memory
protection

TABLE XVII: Common vulnerabilities partially mitigated by Ethos protections

Vulnerability Protection

Unnecessary privileges∗ P1

Incorrect permission assignment for critical resource∗ P1, P4

SQL injection† P3

OS command injection† P3

Upload of a file with a dangerous type† P3

Limitation of path to a restricted directory∗ P6

Execution with unnecessary privileges∗ P2
∗Ethos’ authorization system provides a consistent, system-wide way to restrict privileges
†Ethos provides a convenient mechanism for dealing with types, so it is unlikely that an application
would allow communication using unstructured messages (e.g., allowing communication using strings
that pass Ethos’ type checks, but are parsed into something else by the application)

We compare our Ethos application to OpenSSH on POSIX. A user executes the resh client to

issue commands on a remote server, in a manner similar to OpenSSH. Though simple, this

application illustrates several of Ethos’ advantages over POSIX.

We wrote resh in Go; it contains 547 LoC, with 383 of that in Go YACC. Resh and its

corresponding server, reshDistributor/reshVP, were shown as pseudo code in Figure 10. Like
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Figure 28: Interaction of the processes that make up resh

most Ethos services, resh is made up of a client, distributor, and virtual process, and we depict

this architecture visually in Figure 28. For brevity, we omitted error handling code from our

listings. The design pattern described here can also be used for webserver-style services.

If Alice is the remote user, then both resh and reshVP run as Alice. Ethos accomplishes

this without any application encryption, authentication, or authorization code (Figure 10 has

none), because Ethos provides these services at the system level. Furthermore, no application

code ever has access to authentication secrets.

By default, Ethos’ authorization policy disallows network-facing distributors from reading

and writing a network file descriptor. Thus this distributor has two network privileges: it

may advertise services and import connections of the appropriate type. Once it imports a file

descriptor, it may only fdSend it to a virtual process. Only a process matching the remote user

can use this descriptor. If the descriptor was sent to a virtual process running on behalf of the

wrong user, Ethos authorization would prevent the process from reading or writing it. Thus
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Path Label

Terminal terminal

Each program Program name

/services/resh/resh svcMsg

(a) filesystem labels; spool queues are per-user

1 x ( r e s h ) = [ s h e l l , ug . out ]
2 a d v e r t i s e ( svcResh ) = [ resh , ug . out ]
3 out ( svcResh ) = hg . out
4 r ( t e r m i n a l ) = [ resh , ug . out ]
5 w( t e r m i n a l ) = [ resh , ug . out ]
6 r ( svcResh ) = [ resh , ug . out ]
7 w( svcResh ) = [ resh , ug . out ]

9 x ( r e s h D i s t ) = [ i n i t , nobody ]
10 a d v e r t i s e ( svcResh ) = [ r e s h D i s t , nobody ]
11 i n ( svcResh ) = ug . i n
12 fdS ( reshVP ) = [ r e s h D i s t , nobody ]

14 r ( svcResh ) = [ reshVP , ug{$ } . i n ]
15 w( svcResh ) = [ reshVP , ug{$ } . i n ]
16 . . .

(b) LEAP specification

Figure 29: An authorization policy for resh

this distributor can only affect availability, no matter how it is written. The resulting virtual

process runs as the remote user who is restricted through Ethos’ authorization policy.

Figure 29 describes the authorization policy that governs resh’s components, with Figure 29a

showing the filesystem labels associated with resh, and Figure 29b listing a simplified version of

the corresponding LEAP policy (without label or group definitions). The terminal at which a

user writes and views messages bears the label terminal. Each program has a program-specific

label (e.g., resh bears the label resh). We described earlier the correspondence between a service
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name and filesystem node; here the node has the label svcResh. The LEAP policy references

two group sets, ug and hg, respectively collections of users and hosts. Each of these group sets

contains two groups, in and out, concerning incoming and outgoing connections.

First, the policy regulates resh. When run by a user in group ug.out, resh may connect to

and read/write a remote resh service (Lines 2–6), read a command that a user enters at the

terminal (Line 4), and print a command’s output (Line 5). Lines 10–11 allow reshDistributor

to import connections from users in ug.in. The distributor may then fdSend the connection

to reshVP (Line12). The distributor is forbidden from reading or writing the connection. The

virtual process reshVP can read or write the connection if the remote-client user matches the

user running reshVP (Lines 14–15), and can perform other tasks (e.g., executing programs)

depicted only with ellipses here. The Ethos type checker guarantees that all data written to

or read from the resh service by either resh or reshVP is well-formed with respect to the ETN

definition of the resh RPC.

OpenSSH implements its protections very carefully, requiring substantial effort [127].

OpenSSH has significant responsibilities not required of an Ethos application. Most notably, it

must implement encryption and determine the remote user through some application-layer au-

thentication protocol. Both require a substantial amount of application-specific code; OpenSSH

contains nearly 12,000 lines of cryptographic- and authentication-related code, 12% of its total.

Application-based techniques must be repeated for each application and not all applica-

tions are as carefully implemented as OpenSSH. Often such POSIX applications do not execute

with remote user privileges. Instead, such applications (e.g., Apache or MySQL) themselves
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Figure 30: Interaction of the processes that make up eMsg

implement authorization controls, further adding to the application programmer’s security re-

sponsibilities.

9.4 Arbitrary-user virtual process case study

We implemented on top of Ethos a networked messaging application named eMsg to demon-

strate an arbitrary-user virtual process. Figure 30 visually presents the processes involved in

eMsg, and Figure 31 contains a pseudo-code listing of eMsg. We wrote eMsg in Go; it contains

698 LoC, and is patterned after such Mail Delivery Agents (MDAs) as qmail and Postfix.

eMsg consists of five programs, four of which pertain especially to Ethos’ network protections:

msgWrite is used to compose a message and store it in the sender’s outgoing spool.
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msgSend is a virtual process that is either invoked by msgWrite or every ten minutes. msgSend

delivers outgoing messages to a remote msgDistributor.

msgDistributor accepts messages received over the network, peeks at the recipient, and executes

msgReceive with the recipient’s credentials.

msgReceive runs as a virtual process with the recipient’s credentials and writes incoming

messages to the recipient’s spool.

msgView displays the messages in a user’s local incoming spool. It does not directly interact

with the network, hence its listing is not included in Figure 31.

A user runs msgWrite to create a message. MsgWrite writes the message to the user’s outgoing

spool and notifies msgSend of the outgoing message via fdSend (Line 3). The purpose of this

fdSend is to wake up the receiving process.

MsgSend calls fdReceive and beep (a timer) and then blocks until either system call completes

(Line 5). In either case, msgSend reads the user’s outgoing spool and attempts to send each

message over the network by calling ipc and write (Lines 9–10); this communication is protected

by Ethos’ implicit encryption.

To receive a message, msgDistributor listens for connections. After import returns (Line 14),

msgDistributor calls peek (Line 15) to obtain the recipient of the message without disturbing

the stream. MsgDistributor then uses fdSend (Line 16) to pass the network file descriptor to

msgReceive, a virtual process running on behalf of the recipient which writes the message to

the recipient’s incoming spool.
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1 msg ← readMsgEnteredByUser ( )
2 w r i t e V a r (”˜/ out /” + g e t t i m e ( ) , msg )
3 fdSend ( [ FdNul l ] , g e t u s e r ( ) , ”msgSend ”)

(a) msgWrite allows user to submit a message to outgoing spool

4 do f o r e v e r
5 w a i t on f d R e c e i v e ( ) o r beep ( 6 0 0 )
6 s p o o l D i r ← s y s c a l l . O p e n D i r e c t o r y (”˜/ out ”)
7 f o r f i l e n a m e i n s p o o l D i r
8 msg ← msg . ReadVarMsg ( s p o o l D i r , f i l e n a m e )
9 e , d ← msg . I p c (” msg ” , msg . To . Host )

10 e . MsgTransmit ( msg )
11 r e m o v e F i l e ( f i l e n a m e )

(b) Client msgSend sends spooled mail after notification

12 l i s t e n F d ← a d v e r t i s e (” msg ”)
13 do f o r e v e r
14 netFd , u s e r ← i m p o r t ( l i s t e n F d )
15 msg ← peek ( netFd )
16 fdSend ( [ netFd ] , msg . To , ” msgRece ive ”)

(c) Server msgDistributor sends file descriptors to msgReceive

17 f u n c msgTransmit ( e ∗ Encoder , msg Msg)
18 msg . WriteVarMsg (”˜/ i n /” + g e t t i m e ( ) , msg )

20 // Main .
21 do f o r e v e r
22 f d ← FdRece ive ( )
23 e ← e t n E t h o s . NewWriter ( f d )
24 d ← e t n E t h o s . NewReader ( f d )
25 d . HandleMsg ( e )

(d) Server msgReceive reads messages/writes incoming spool

Figure 31: The Ethos messaging system eMsg in pseudo code
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Path Label

Terminal terminal

Each program Program name

/user/user/out/* spoolOut

/user/user/in/* spoolIn

/services/msg/msg svcMsg

(a) filesystem labels; spool queues are per-user

1 x ( msgWrite ) = [ s h e l l , ug . out ]
2 r ( t e r m i n a l ) = [ msgWrite , ug . out ]
3 c ( spoo lOut ) = [ msgWrite , ug{$ } . out ]
4 w( spoo lOut ) = [ msgWrite , ug{$ } . out ]
5 fdS ( msgSend ) = [ msgWrite , ug . out ]

7 r ( spoo lOut ) = [ msgSend , ug . out ]
8 i p c ( svcMsg ) = [ msgSend , ug . out ]
9 out ( svcMsg ) = hg . out

10 w( svcMsg ) = [ msgSend , ug . out ]

12 x ( msgDist ) = [ i n i t , nobody ]
13 a d v e r t i s e ( svcMsg ) = [ msgDist , nobody ]
14 i n ( svcMsg ) = ug . i n
15 r ( svcMsg ) = [ msgDist , nobody ]
16 fdS ( msgRecv ) = [ msgDist , nobody ]

18 r ( svcMsg ) = [ msgRecv , ug . i n ]
19 c ( s p o o l I n ) = [ msgRecv , ug{$ } . i n ]
20 w( s p o o l I n ) = [ msgRecv , ug{$ } . i n ]

22 x ( msgView ) = [ s h e l l , ug . i n ]
23 r ( s p o o l I n ) = [ msgView , ug{$ } . i n ]
24 w( t e r m i n a l ) = [ msgView , ug . i n ]

(b) LEAP specification

Figure 32: An authorization policy for eMsg
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In contrast to remote-user authentication, arbitrary-user authentication allows the client

to be owned by Alice and the virtual process msgReceive to be owned by Bob. This allows

msgReceive to write to Bob’s incoming spool (and run Bob’s mail filters) even though the

sender (i.e., remote user) is Alice.

Like resh, eMsg dedicates zero LoC to network authentication. It differs from resh in that

authorization must be more permissive: the distributor can read messages (necessary to deter-

mine the recipient) or route a file descriptor to the wrong user. Furthermore, the msgReceive

virtual process may read from any network file descriptor from the distributor, not just those

that are owned by the virtual process’ user, so here messages sent to the wrong user can be read

by that user. Thus msgDistributor’s code must be audited to ensure it will not deliver a message

to the wrong recipient, but msgDistributor is very simple—35 LoC. The audit assures that it

always calls fdSend with the proper recipient as the user argument. This is much less work than

that required of a POSIX messaging system which implements its own authentication. For

example, an audit of Postfix requires checking its use of OpenSSL and Simple Authentication

and Security Layer (SASL).

Figure 32 describes the authorization policy that governs eMsg’s components, with Figure

32a showing the filesystem labels associated with eMsg, and Figure 32b listing a simplified

version of the corresponding LEAP policy (without label or group definitions). The labels are

similar to those presented for resh, with two additions: eMsg places outgoing messages in an

outgoing spool directory, labeled spoolOut; and the incoming spool directory bears the label



171

spoolIn. Here the service node bears the label svcMsg. We also reuse the groups ug and hg

from the resh example.

First, the policy regulates msgWrite. When run by a user in group ug.out, msgWrite can read

a message that a user enters at the terminal (Line 2), write the message to the outgoing spool

(Lines 3 and 4), and invoke msgSend as a virtual process (Line 5). Here the notation ug{$}.out

further qualifies permissions: msgWrite, running on behalf of some user u, may create or write

only to directories owned by u. (Label spoolOut and pku ∈ ug.out must still be satisfied.)

Lines 8–10 allow msgSend’s use of ipc and write; the program can connect and write to the

service labeled svcMsg if running as a user in ug.out. Line 9 restricts the eMsg servers msgSend

may connect to to those in the group hg.out.

On Line 14, the policy restricts incoming connections to those originating from users in

ug.in; such principals are cryptographically authenticated by Ethos. Of note in the remainder

of the specification are Lines 19 and 20, which ensure msgReceive writes only to the recipient’s

own spool.

9.5 Local authentication case study

As mentioned in Chapter 5, Ethos prevents password authentication over the network. The

authenticate system call cannot be used for networked communication since it requires that

the password be typed on a physical, local keyboard. The local login distributor (Figure 15) is

particularly restricted; it is limited to reading from stdinFd and calling fdSend. Thus the only file

descriptors the login distributor may pass to fdSend are the terminal file descriptors: stdinFd,

stdoutFd, and stderrFd. The distributor may prompt for a username and pass the terminal
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file descriptors to the corresponding loginVP virtual process using fdSend. A compromised

distributor might fdSend to the wrong user’s loginVP, but that would cause the authentication

to fail. Furthermore, since authenticate is a system call that does not release user secrets to

user space, this breach could not be used by one user to collect the password of another. The

distributor can only affect availability. This leaves loginVP which runs as the target user—it

has no special privileges. The administrator needs to check that loginVP calls authenticate;

however, loginVP is unique—there is only one local login program, and it is made up of fewer

than 100 lines of Go and distributed with Ethos.

9.6 Certificate-set authorization case study

Users must review and approve signatures, and a system should assist them in this task.

After all, a smart card may help isolate a private key but it cannot help a user decide what to

sign. It must be possible to reason about a system and identify which application/user pair can

produce which types of certificates.

In Figure 18, we presented a certificate that represented the authorization of a bank trans-

fer. For obvious reasons, such a certificate is very sensitive. A user might expect a banking

application to generate a transfer request, and he might trust that application because it was

written carefully by his bank. (We already mentioned that banks in fact also produce faulty

software [11], but this is an orthogonal issue.) On the other hand, the user might not equally

trust a game he plays on the same computer. Obviously, the system should restrict the game so

that it cannot produce a bank transfer certificate. Ethos does just this with its access controls

on the sign system call. The sign call requires the sign permission on a given directory. Since all
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of the files in a directory must conform to the directory’s type, this restricts the application so

that it can only sign data of permitted types. Furthermore, dangerous certificate types—such

as those with machine-interpreted external references or replayable meanings—can be system-

atically avoided. Thus system administrators restrict the certificates that may be signed to

those with vetted semantics and they do so in a centralized place, Ethos’ authorization policy.

9.7 System administration

The presence of network security code in POSIX applications also has consequences for

system administrators. Even small but nonetheless disparate configuration requirements—such

as disabling the use of passwords by SSH—combine to create overall complexity. Performing

these tasks takes inordinate time and skill [186], and is different for each application. As a result,

configuration errors remain common [187]. Even the most security-sensitive organizations are

unable to adequately assure their systems [8], and administrators routinely lose track of the

means by which users may connect to their systems [188].

Consider configuring an application that runs on top of a web server such as Apache. An

administrator must first choose an Apache authentication provider; we chose a simple one,

mod authn file, as a lower bound on the required work. Apache also requires explicit config-

uration of TLS. The necessary authentication-related modules—mod ssl, mod auth digest,

mod authz host, and mod authn file—have 54 configuration points; one mistake can result

in missing or weak encryption or authentication. As this work is performed at the application

layer, the system administrator must independently configure each application (e.g., Postfix,

MySQL, etc.).
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For the most part, Ethos administrators can safely treat applications as black boxes—

application-specific security settings are unnecessary. Furthermore, Ethos partitions general

security requirements from business logic. The former is the responsibility of administrators;

only the latter must be considered by application programmers. Of course, good code parti-

tioning by application programmers will enable the system administrator to be more effective.

That is, programmers should split their applications into separate processes so that they can

be subjected to the Multics principle of least privilege [118].

No configuration is needed for protections P1–P6 (§9.2); they are transparently provided

by Ethos. The security settings Ethos does have are centralized in the LAS/RAS and system-

level authorization configuration (both are policy specifications, and so must be configurable).

Authorization is external to application code, and covers network authorization by user, host,

and program. Anonymity in Ethos allows universally accessible, but authenticated, service

without requiring application-level user accounts.

Ethos also reduces code audit requirements. Network authentication is expected to be the

common case, and this does not require any application source code audits for integrity and

confidentiality. Few services require local or arbitrary-user virtual process authentication; these

applications are easy to audit, especially as distributors are quite small. Distributors might also

be audited for DoS protections, but this is only necessary for stranger- or anonymous-authorized

services. (More complex DoS are associated with Ethos’ cryptography, but that is not performed

by the application.)



CHAPTER 10

CONCLUSION

10.1 Lessons learned

Many properties of current systems give rise to application-based subversion, where

application-programmer errors, application-programmer omission, or application misconfigu-

ration allows an attacker to violate a system’s security policy. We found that typical network

applications on POSIX require thousands of redundant lines of security-related code to provide

network encryption, authentication, and authorization. We also found that configuring such

applications required reading dozens of pages of documentation for each application. Thus

developing and deploying network applications on POSIX is very complex, and this results in

security holes.

Recent developments enable us to design much simpler, more robust systems. This is

primarily due to the performance of modern hardware and the rise of virtualization. Processor

speeds allow us to maximally encrypt all network messages, which in turn allows for assumptions

that radically simplify system design. Virtualization means that we can provide narrower, more

abstract system call interfaces, because specialized OSs can coexist with traditional OSs on the

same hardware. Virtualization also aids in the deployment of a new OS.
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10.2 Summary of Ethos

Ethos uses MinimaLT to provide universal network encryption, authentication, IP mobility,

and DoS protections. In many cases, the latency of MinimaLT is less than with cleartext

TCP/IP, and MinimaLT approaches a throughput rate of 1 Gb/s using a single CPU core.

Ethos’ network authentication handles known, stranger, and anonymous users.

Ethos provides strong network protections with zero lines of application security code. In

contrast, each POSIX network application requires thousands of lines of repetitive, security-

sensitive code. Ethos’ networking system calls implicitly invoke encryption, authentication,

type checking, and authorization, thereby shrinking application code bases and reducing their

attack surface. An application programmer can neither fail to invoke nor incorrectly invoke

these protections.

In Ethos, network security does not require any application-specific configuration. Instead,

system administrators configure a system-wide user database and an authorization policy. This

saves administrators from reading per-application security configuration documentation, con-

figuring services for security using application-specific mechanisms, and auditing thousands of

lines of code. System administrators can thus better secure applications and are less dependent

on programmers for application and overall system security.

Ethos’ more abstract system calls give rise to a more abstract authorization policy language.

Ethos administrators use LEAP to directly restrict actions performed by remote users. This is

in contrast to SELinux which requires cooperation between properly implemented application-

based network authentication and the OS’s access controls. Combined with Ethos’ simpler
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programming model and compulsory protections, Ethos’ more abstract authorization controls

result in systems with fewer opportunities for application-based subversion.

10.3 Directions of future research

We are beginning to shift our focus from kernel development to user space. Projects under-

way include writing Go packages to aid application development; designing eL, our type-safe,

dynamically-checked, Etypes-integrated programming language; designing a graphics subsys-

tem; designing a database; and developing substantial applications. We are focusing on par-

ticularly security-sensitive applications which will most stress Ethos’ other security services,

much like we investigated networking here. We expect that this work on applications will drive

continued refinement of the system call interface that Ethos provides.

Applications will also require management tools. Thus we plan to refine our existing ad-

ministrative utilities and develop new tools, such as a package manager. Ethos’ type system in

particular will allow for a fresh look at system administration utilities. We anticipate that eL

will help us write a series of Unix-like utilities that manipulate rich, structured data instead

of text.

Work on applications will eventually allow us to certify our design and ultimately reimple-

ment and verify our research prototype for high assurance. This will be a large project, but

we have begun the initial steps of simplifying Ethos’ implementation and restructuring Ethos’

source code. We also plan to port Ethos so that it runs as a Hardware Virtual Machine (HVM)

and port Ethos to the ARM architecture. We discuss virtualization-related considerations in

Appendix D.
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10.4 Application of this research

The Ethos project has produced two significant artifacts. First, we have written a usable

Ethos prototype that runs on a Xen paravirtual machine, and we will soon publish a more robust

implementation as open source software. This allows programmers to build real-world systems

on top of Ethos. Second, we have designed a novel system call interface and its corresponding

semantics. We believe that our approach of increasing robustness through simplification, as

well as our resulting design, will find application in many software systems.
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Appendix A

Etypes Notation

Here we present the formal grammar for ETN. A programmer defines ETN types using an

ETN specification, complies the specification into a type graph, and then uses code generators

to produce corresponding programming-language types and procedures (Chapter 6). An ETN

specification can import an existing type graph and reference its types as it declares a new

series of types. We first present the top-level rule for an ETN specification before presenting

the rest of the grammar from the bottom up.

〈Specification〉--

� �
� �

� 〈Import〉 �
� �

� �
� �

� 〈Type〉 �
� � -�

All ETN terminal symbols except for string literals are made up of letters and digits. Letters

can be any Unicode code point from the general category letter (i.e., 〈UnicodeLetter〉) and under-

scores. String literals may further contain any Unicode characters (i.e., 〈UnicodeCodePoint〉).

This allows identifiers and string literals to include a large range of characters from different

languages.

〈Letter〉-- �〈UnicodeLetter〉� ‘ ’ �
� -�
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Appendix A (Continued)

〈PositiveDigit〉-- � ‘1’� ‘2’ �
� ‘3’ �
� ‘4’ �
� ‘5’ �
� ‘6’ �
� ‘7’ �
� ‘8’ �
� ‘9’ �

� -�

〈Digit〉-- � ‘0’� 〈PositiveDigit〉 �
� -�
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Appendix A (Continued)

〈HexDigit〉-- �〈Digit〉� ’a’ �
� ’b’ �
� ’c’ �
� ’d’ �
� ’e’ �
� ’f’ �
� ’A’ �
� ’B’ �
� ’C’ �
� ’D’ �
� ’E’ �
� ’F’ �

� -�

Identifiers provide names for entities such as types, structure fields, and function parameters.

The identifiers in a given scope must be unique, except with respect to case. ETN identifiers are

case-insensitive because the capitalization of identifiers may change during code generation to

satisfy programming-language requirements. A special type of identifier, the qualified identifier ,

references an entity declared elsewhere (see 〈Import〉).
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Appendix A (Continued)

〈Identifier〉-- 〈Letter〉

� �
� �

� 〈Letter〉 �
� 〈Digit〉 �

� � -�

〈QualifiedIdent〉-- 〈Identifier〉 ‘.’ 〈Identifier〉 -�

ETN predeclares the following identifiers, which name ETN’s primitive types:

uint8 uint16 uint32 uint64 int8 int16 int32 int64 float32

float64 byte bool string any

ETN reserves the following keywords for use in constructing composite types, so they may not

be used as identifiers:

import interface struct union

ETN also forbids the use of the following characters within identifiers because they represent

delimiters or otherwise special characters:

‘[’ ‘]’ ‘{’ ‘}’ ‘∗’

An integer literal is a sequence of decimal digits that represents an integer constant.
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Appendix A (Continued)

〈PosIntLiteral〉-- 〈PositiveDigit〉

� �
� �

� 〈Digit〉 �
� � -�

A hash literal is a sequence of hexadecimal digits which is prefixed with 0x or 0X and

represents a hash value.

〈HashLiteral〉-- ‘0’ � ‘x’� ‘X’ �
�
� �
� 〈HexDigit〉 � -�

A string literal is a sequence of Unicode code points representing a string constant.

〈StringLiteral〉-- ‘‘’

� �
� �

� 〈UnicodeCodePoint〉 �
� � ‘‘’ -�

ETN predeclares named instances of its primitive types (named above as predeclared iden-

tifiers and described below). Composite types—tuple, dictionary, pointer, struct, and union,

and interface types—may be constructed using predeclared and user-declared type identifiers.

A numeric type represents a set of integer or floating-point values. ETN predeclares the

following numeric types:
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Appendix A (Continued)

uint8 unsigned 8-bit integers (0 to 28 − 1)

uint16 unsigned 16-bit integers (0 to 216 − 1)

uint32 unsigned 32-bit integers (0 to 232 − 1)

uint64 unsigned 64-bit integers (0 to 264 − 1)

int8 signed 8-bit integers (−27 to 27 − 1)

int16 signed 16-bit integers (−215 to 215 − 1)

int32 signed 32-bit integers (−231 to 231 − 1)

int64 signed 64-bit integers (−263 to 263 − 1)

float32 IEEE-754 32-bit floating-point numbers

float64 IEEE-754 64-bit floating-point numbers

byte alias for uint8

ETN also provides the predeclared types bool, string, and any. The boolean type represents

the truth values true and false, strings represent the set of Unicode strings, and the any type

represents the set of all other declared types.

A tuple is an ordered sequence of values of a specified type but with no specified length.

〈Tuple〉-- ‘[’ ‘]’ 〈TypeName〉 -�

An array resembles a tuple, but specifies a positive number of elements that must be present

in a valid value.

〈Array〉-- ‘[’ 〈PosIntLiteral〉 ‘]’ 〈TypeName〉 -�
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A dictionary is an unordered mapping from a set of keys of a given type to a set of values

of a (possibly distinct) type. The key type must be a numeric, string, or pointer type.

〈Dict〉-- ‘[’ 〈TypeName〉 ‘]’ 〈TypeName〉 -�

A pointer type represents the set of all references to values having a given type. If a pointer

value contains a reference, it is a valid reference to a value. Otherwise, the pointer contains the

value nil.

〈Ptr〉-- ‘*’ 〈TypeName〉 -�

As described in Chapter 6, annotations describe the semantics of types and contribute to

type hashes. Annotations may either be present in ETN as a literal or stored in an external

file and referenced using see. In the former case, the use of a 〈StringLiteral〉 provides the

annotation inline, and, alternatively, the use of a 〈HashLiteral〉 references a file whose hash

is known (whereas the file itself might not be available). In the latter case, a 〈StringLiteral〉

represents a filesystem path and an optional 〈HashLiteral〉 ensures the contents of the referenced

annotation file do not change (before the ETN is compiled into a type graph).
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〈Annotation〉-- ‘[’ � 〈StringLiteral〉� 〈HashLiteral〉 �
� ‘see’ 〈StringLiteral〉 �

� 〈HashLiteral〉 �
� �

� ‘]’ -�

Structures define a series of fields, along with the name and type of each of these fields. Field

names may be specified explicitly (i.e., in the case where 〈Identifier〉 is present before the field

type) or implicitly. The body of a structure declaration forms a scope, and each field’s name

must be unique within this scope. Each field of a struct may be prefaced by an annotation.

〈FieldSpec〉-- �
� 〈Identifier〉

� �
� �

� ‘,’ 〈Identifier〉 �
� � �

� 〈SimpleType〉 -�

〈Struct〉-- ‘struct’ ‘{’

� �
� �

� 〈Annotation〉 �
� 〈FieldSpec〉 ‘;’ � ‘}’ -�

A union is specified in a manner like structures, but represents one of an explicitly defined

set of types. Thus a union behaves like a restricted any type.
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〈Union〉-- ‘union’ ‘{’

� �
� �

� 〈Annotation〉 �
� 〈FieldSpec〉 ‘;’ � ‘}’ -�

An interface specifies the collection of named procedures to which an IPC channel bearing

the type responds. Each procedure in an interface has a name, a list of parameters, and an

optional list of results. Within parameter or result lists, each item has a type and optional name,

but the names must either all be present or all be absent. As a convenience, the 〈Procedures〉

production permits the definition of many procedures that share the same parameter and result

lists.

〈ParamPart〉-- �
� 〈Identifier〉 �

�
� �
� �

� ‘,’ 〈Identifier〉 �
� � 〈SimpleType〉 -�

〈ParamList〉-- ( �
� 〈ParamPart〉 �

�
� �
� �

� ‘,’ 〈ParamPart〉 �
� �) -�

〈Procedures〉-- 〈Identifier〉

� �
� �

� ‘,’ 〈Identifier〉 �
� � 〈ParamList〉 �

� 〈ParamList〉 �
�-�
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〈Interface〉-- ‘interface’ ‘{’

� �
� �

� 〈Annotation〉 �
� 〈Procedures〉 ‘;’ � ‘}’ -�

ETN types may be specified by a type name or a type literal; either composes a new type

from previously declared types.

〈TypeName〉-- � 〈Identifier〉� 〈QualifiedIdent〉 �
� -�

〈SimpleType〉-- �〈TypeName〉� 〈Tuple〉 �
� 〈Array〉 �
� 〈Dict〉 �
� 〈Ptr〉 �

� -�

〈Type〉-- �
� 〈Annotation〉 �

� 〈Identifier〉 �〈SimpleType〉� 〈Struct〉 �
� 〈Union〉 �
� 〈Interface〉 �

� ‘;’ -�
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Importing a type graph allows the use of the types described by it, even when their original

ETN specifications are not available. After type graph G containing type t has been imported,

its types can be referenced using the qualified identifier G.t.

〈Import〉-- ‘import’ 〈StringLiteral〉 -�

ETN comments do not nest and resemble those found in C, C++, and Go. Line comments

start with the character sequence // and continue up to the end of the line. Block comments

start with the character sequence /∗ and continue through the character sequence ∗/.

ETN uses semicolons as terminators in a number of productions. Similar to Go, ETN type

descriptions may omit semicolons in the following cases:

(1) at the end of particular lines: after the ETN lexer breaks its input into tokens, it inserts

a semicolon into the token stream at the end of a non-blank line if the line’s final token

is not ‘;’, ‘,’, ‘(’, or ‘{’; and

(2) before a closing ‘}’.
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TYPE GRAPHS

TABLE XVIII: Base types found in Etypes Notation along with the integers that identify
them within a type graph

int8 = 0 unit8 = 1 bool = 2 int16 = 3

uint16 = 4 int32 = 5 uint32 = 6 int64 = 7

uint64 = 8 float32 = 9 float64 = 10 string = 11

any = 12 union = 13 type = 14 tuple = 15

array = 16 dictionary = 17 struct = 18 interface = 19

method = 20 list = 21 pointer = 22

1 Hash [ ] b y t e

3 A n n o t a t i o n s t r u c t {
4 Hash Hash
5 Data s t r i n g
6 Base b y t e
7 }

9 TypeNode s t r u c t {
10 Hash Hash
11 Name s t r i n g
12 Base b y t e
13 Annot ∗ A n n o t a t i o n
14 S i z e u i n t 3 2
15 Elems [ ] Hash
16 F i e l d s [ ] s t r i n g
17 }

Figure 33: The types that make
up a type graph

Our toolchain stores type graphs as a series of files,

where each file contains one type graph node. Each node’s

type hash serves as the filename, and the files themselves

are encoded using ETE.

To the left we list the types used to encode a type graph.

Each node in the graph is of type TypeNode. Nodes have

a type hash (Hash), optional name (Name), integer that

identifies the type’s base kind (Base), optional annotation,

(Annot), optional size (Size), optional tuple of element type
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hashes (Elems), and optional tuple of element names (Fields). Table XVIII shows the corre-

spondence between base kinds and their integer identifiers.

Primitive nodes describe the predeclared types supported by ETN. A primitive node may

contain any of the values 0–12 in its Base field. The Hash and Name fields of a primitive

node contain the type hash and predeclared identifier of its corresponding primitive type (e.g.,

‘‘int8’’), respectively. All other fields are empty.

Composite nodes describe unions, tuples, arrays, dictionaries, structures, interfaces, meth-

ods, lists, or pointers. The semantics of these nodes’ Size, Elems, and Fields fields vary depending

on their base kind. We describe the kind-specific semantics of these nodes in Table XIX. We

do not describe again the Hash, Base, or Annotation fields in this figure, because the meaning

of these fields is consistent across all kinds.

TABLE XIX: Semantics of the Name, Size, Elems, and Fields fields for each kind that may be
present in a type graph; we do not describe here fields that are irrelevant for a given kind or
commonly defined for all kinds

Kind Union (Base = 13)

Sample someUnion union { a uint32; b float32 }
Name “union”

Elems Type hashes for the types the union may represent, in the order in which
they appear in the ETN definition (e.g., the type hash of uint32 and float32)

Fields A tuple containing a name for each field in Elems (e.g., ‘‘a’’ and ‘‘b’’)

Kind Type (Base = 14)

Sample someType [ ]uint32

Name Identifier that appears in the ETN definition (e.g., ‘‘someType’’)

Elems The type hash of the type being named (e.g., the type hash of [ ]uint32)
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Kind Tuple (Base = 15)

Sample [ ]uint32

Name The ETN definition of the tuple (e.g., ‘‘[ ]uint32’’)

Elems The type hash of the elements in the tuple (e.g., the type hash of uint32)

Kind Array (Base = 16)

Sample [8]uint32

Name The ETN definition of the array (e.g, ‘‘[8]uint32”)

Size Number of elements in the array (e.g., 8)

Elems The type hash of the elements in the array (e.g., the type hash of uint32)

Kind Dictionary (Base = 17)

Sample [string]uint32

Name The ETN definition of the dictionary (e.g, ‘‘[string]uint32’’)

Elems Two type hashes: the key type and the value type (e.g., the type hash of
string and uint32)

Kind Structure (Base = 18)

Sample someStruct struct { a uint32; b float32 }
Name ‘‘struct’’

Elems The type hash of each structure field’s type, in the order in which they
appear in the ETN definition (e.g., the type hash of uint32 and float32)

Fields A tuple containing a name for each field in Elems (e.g., ‘‘a’’ and ‘‘b’’)

Kind Interface (Base = 19)

Sample someInterface interface { methodB (); methodA () }
Name ‘‘interface’’

Elems The type hash of each method of the interface, lexicographically sorted by
method name (e.g., the type hash of methodA and methodB)

Fields A tuple containing a name for each method in Elems (e.g., ‘‘methodA’’ and
‘‘methodB’’)
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Kind Method (Base = 20)

Sample someMethod (p1, p2 uint32) (r1 uint32)

Name Name, as it appears in the ETN definition (e.g., ‘‘someMethod’’)

Elems The hashes of two lists that describe the function parameters and result
values, respectively

Fields A tuple containing a variable name for each parameter and result value
(e.g., ‘‘p1’’, ‘‘p2’’, and ‘‘r1’’)

Kind Parameter list (Base = 21)

Sample (p1, p2 uint32)

Elems The hashes of the types in the list (e.g., three elements containing the type
hash of uint32)

Kind Pointer (Base = 22)

Sample ∗uint32

Name The ETN definition of the pointer (e.g, ‘‘∗uint32’’)

Elems The hash of the target type (e.g., the type hash of uint32)
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COMPATIBILITY

Because of the huge computing infrastructure and installed software base, compatibility is

essential. Compatibility impacts several levels in a system, including: applications, libraries,

system calls, networking, and protocols. Ethos’ clean-slate design is intended to avoid semantics

that have led to errors in the past, and thus Ethos is not source-code compatible. Another means

is therefore needed for real-world compatibility.

Ethos’ VMM-based implementation bridges the issues of needed applications, libraries, and

system calls. A computer can run several OSs concurrently, which means that the other OSs’s

applications are instantly available, as are its system calls and libraries. Furthermore, Ethos is

directly compatible with IP and traverses Network Address Translation (NAT) networks.

By design, Ethos speaks only a single family of RPC-based application protocols. Other

protocols can be bridged through the use of proxies running on other OSs. Thus we have ported

Ethos’s networking stack to Linux. This allows Ethos to service requests originating as any

number of existing protocols. Of course, this is a less-than-ideal compromise; existing OSs

will not benefit from Ethos’ unified design, even as we port individual Ethos components. We

believe that appropriate layering can make proxies more effective.

Collectively, these techniques allow a transition to Ethos (or another designed-for-security

OS) over a period of decades, if necessary, since using Ethos does not preclude the use of any

other OS. We believe that during that period, many applications will need to be rewritten to be
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more secure, and we hope that they will target Ethos to do so. (We note that massive rewrites

and application changes were made to deal with the Y2K issue; security is a much broader

issue and so its solution is likely to be more expensive.) This is a large amount of work, but we

believe it to be far smaller than trying to secure critical applications on traditional OSs.
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VIRTUALIZATION-SPECIFIC CONSIDERATIONS

Roscoe et al. used the term disruptive virtualization [189] when describing how virtualization

could allow more expedient experimentation with OS interfaces, and we tailored some of their

ideas for our own use. Writing an OS traditionally is a difficult task. This is due to the

unforgiving environment when communicating directly with hardware, the idiosyncrasies found

in computer architectures, the requirement for writing device drivers, and the need to complete

many subsystems before the OS becomes useful. Here we discuss how we used virtualization to

more expediently accomplish each of these requirements.

D.1 The appeal of a VMM-based approach

We began work on Ethos before there was stable HVM support in Xen [190]. Because of

this, we chose not to build Ethos on top of an existing microkernel. Instead, we built Ethos

by adding user-space processes, system calls, etc. to Xen’s MiniOS. There are many known

advantages to targeting a VMM when developing a new OS. This includes debugging support,

profiling support, device support, and providing for backwards compatibility. We summarize

each of these here (except for backwards compatibility, which we described in Chapter 1) before

describing some additional tricks in §D.2.
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via
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Figure 34: The Xen kernel debugging architecture

D.1.1 Debugging

The Linux kernel provides a debugging interface made up of gdb and a kernel component,

kgdb. The kgdb stub consumes 5,802 LoC on Linux 3.2. Furthermore, using kgdb requires a

second computer, connected to the debug target using a serial cable. Because Ethos targets Xen,

it is unnecessary for us to implement special debugging support code in our kernel. Instead, we

take advantage of gdbsx, a feature provided by Xen.

Figure 34 summarizes the gdbsx architecture. gdbsx is a program that runs on Dom0 that

(1) communicates via Xen with the target virtual machine, and (2) communicates with gdb over

a TCP/IP socket. The only special requirement from Ethos when using gdbsx is that Ethos

must have been compiled into an executable with debugging information.

To automate the use of gdbsx, we wrote a program named ethosDebug that runs Ethos,

gdbsx, and gdb. ethosDebug presents the user with four windows which provide Ethos’ console

output, terminal access to Ethos, other utility output, and the gdb interface.

D.1.2 Profiling

Profiling also benefits from the use of Xen because Xen provides a profiler, Xenoprof [191].

Like gdbsx, using Xenoprof to profile an Ethos kernel requires only that the kernel contain
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CPU: AMD64 fami l y15h , speed 4551.44 MHz ( e s t ima t ed )
Counted CPU CLK UNHALTED even t s ( Cy c l e s o u t s i d e o f h a l t s t a t e ) w i th a u n i t . . .
samp les % image name app name symbol name
1235892 40.9540 e tho s . x86 32 . e l f domain374−k e r n e l . moreb i ts
739271 24.4974 e tho s . x86 32 . e l f domain376−k e r n e l . moreb i ts
96368 3 .1934 e tho s . x86 32 . e l f domain374−k e r n e l c r yp t o . . .
57106 1 .8923 e tho s . x86 32 . e l f domain376−k e r n e l c r yp t o . . .
. . .

Figure 35: Example profile of a running Ethos kernel

debugging information. Xenoprof’s support for this passive profiling has not been integrated

into the mainline Linux kernel, so we occasionally port HP’s patch to newer kernels and make

this work available at http://www.ethos-os.org/xenoprof.

We use Xenoprof in conjunction with xentop, a tool that displays various statistics about

running Xen domains. Figure 35 lists the partial output of a profile of two Ethos domains.

Domain 374 (column 4) is a server and domain 376 is a client, and the two domains are

performing a networking benchmark. We had used Xenoprof to help tune portions of the kernel

to maximize network speed, and the output indicates success because the work is CPU-bound

due to two cryptographic functions.

D.1.3 Device drivers

Device drivers consume a significant number of LoC in OSs. We used the utility cloc to

count 5,625,090 lines of device driver code in Linux 3.2, around 50% of the total LoC in the

kernel. Device driver code is often a source of bugs, including security vulnerabilities. One

study found that they are a source of three to seven times more errors than general kernel code

[192]. Reasons for this high bug rate include malfunctioning devices and poor documentation.
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Despite the large effort required, writing device drivers is often uninteresting from a research

point of view.

Luckily, virtualization provides a solution. By targeting Xen, Ethos need only implement

drivers for Xen’s limited set of virtual devices. Ethos’ network device driver is 462 LoC, and

its console driver is 296 LoC. Although Ethos implements a single paravirtualized driver per

device class, it is able to run on any physical device supported by Xen Dom0.

D.2 Laziness in Ethos

We make tongue-in-cheek use of the word lazy to describe focusing time spent while de-

veloping a new OS to maximize interesting research opportunities. Our use of lazy is similar

to Larry Wall’s [193]. Our focus on developing Ethos is on providing new interfaces, and so

we want to work quickly through the more mundane portions of OS construction. To make

progress, we chose to take shortcuts when developing Ethos’ networking stack and filesystem.

In addition, we tried to maximize good software engineering through the use of something we

call mixins and deliberate testing.

D.2.1 Shadowdæmon

We wrote a Linux utility, shadowdæmon, that provides various services to an Ethos kernel

running in another Xen domain. Communication between an Ethos kernel and shadowdæmon

takes place over the virtual network using a series of RPCs, listed in Table XX. (We im-

plemented Ethos-to-Ethos networking as a set of RPCs too, so this required little additional

labor.) Many of the techniques below use shadowdæmon to take advantage of existing services

in Dom0.
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TABLE XX: List of remote procedure calls supported by shadowdæmon

Name Description

Ping A connectivity test

GetUsers Get the system user accounts

MetaGet Get the metadata associated
with a filesystem node

FileRead Read the contents of the next
object in a stream

FileWriteVar Read the contents of a named
file

DirectoryRemove Remove the named directory

DirectoryCreate Create the named directory

Random Generate random data

D.2.2 Networking

As with most modern OSs, support for networking in Ethos is necessary. For Ethos, net-

working is required because we are interested in studying secure network interfaces. An Ethos

host maintains two network interfaces, one to communicate with the network, and another to

communicate with shadowdæmon. When Ethos boots, it reads a MAC and IP address for each

of these interfaces from the command line provided by Xen. However, we were not interested

in spending the time to implement the components of networking that are not interesting to

our research goals. This includes Address Resolution Protocol (ARP) and a host routing table.

Linux 3.2’s arp.c contains 1,000 LoC. Instead of implementing ARP and a host routing table,

we engineered our Xen configuration so that both would be unnecessary in Ethos. First, we

observed that if we configured Xen to route packets between its virtual and physical interfaces

(instead of bridging them), then Ethos could use the same MAC address (i.e., Dom0’s) for every
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Ethos
IP 192.168.1.1

MAC 1

Dom0

vifX.Y eth0

IP 192.168.1.2 IP 192.168.1.2

MAC 2 MAC 3

Host1
IP 192.168.1.3

MAC 4

Trans. to MAC 2, IP 192.168.1.3

1

Trans. to MAC 4, IP 192.168.1.3

2

Xen domains within same physical machine

Figure 36: Sending a packet from Ethos to a remote host
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(a) Sequence diagram

IP address Interface

192.168.1.1 vifX.Y

192.168.1.0 eth0

(b) Dom0 routing Table

IP address MAC

192.168.1.1 1

(c) Dom0 manual ARP Table

Figure 37: Using proxy ARP to deliver an incoming packet to Ethos

outgoing packet (we depict this in Figure 36). This is because in such a configuration, every

packet is either destined for the Dom0 host or will be routed by the Dom0 host. The MAC

Dom0 uses for its virtual network devices is known: fe:ff:ff:ff:ff:ff.

Incoming packets are slightly more complicated as is shown in Figure 37. Xen’s vif-route

script updates Dom0’s routing tables for each new Xen domain: the script inserts a point-to-
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point route (37b) for each Ethos domain going out Dom0’s virtual interface (e.g., vifX.Y). But

each host and router on a subnet must also discover Ethos’ MAC—normally hosts obtain this

information using ARP. Luckily, Linux has a feature called proxy ARP which is useful here.

We configure each Dom0 virtual network interface and Dom0’s primary physical network

interface with the same IP address. This partitions a single subnet so that each virtual network

interface on Dom0 connects to a single Ethos host, and the physical interface connects to the

remainder of the subnet. We configure Dom0 to forward packets between each partition and

turn on proxy ARP (sysctl flag net.ipv4.conf.all.proxy arp). With this configuration, Dom0 will

answer ARP requests on behalf of each Ethos host provided that (1) the request was received on

interface n’s partition, and (2) the target address belongs to a host that exists on an interface

other than n. The final step is to ensure Dom0 has ARP table entries for each Ethos host.

Ethos immediately sends a packet to shadowdæmon upon booting, and shadowdæmon uses this

packet to update Dom0’s static ARP table (Figure 37c). Thus when Dom0 receives a packet

destined to an Ethos host, its routing/ARP tables allow it to deliver the packet correctly.

D.2.3 Filesystem

Ritchie and Thompson stated “The most important job of Unix is to provide a file sys-

tem” [119]. It is very likely that even research OSs need one. Unfortunately, filesystems

are difficult to develop—an unappealing prospect unless you are a filesystem researcher. We

counted 25,829 lines in Linux 3.2’s ext4 directory and 51,584 in btrfs. Previous research has

shown that even production filesystems contain many bugs [194]. We have reduced this effort

to shadowdæmon’s 814 LoC and an Ethos component of 1,754 LoC.
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Instead of writing a filesystem for our Ethos prototype, we decided to take advantage of

the existing filesystem on Dom0. When an Ethos application invokes a write system call,

Ethos sends shadowdæmon a FileWriteVar RPC that contains a path and the contents to write.

Shadowdæmon then writes the file to its local filesystem. A similar process supports an appli-

cation’s use of the read, fileInformation, removeFile, createDirectory, and removeDirectory system

calls. The fileInformation system call is interesting in that Ethos supports file metadata typically

not present on Linux. Here shadowdæmon makes use of Linux’s getxattr/setxattr system calls

to store Ethos metadata along with the files it describes. Shadowdæmon is also responsible for

providing Ethos with random data using a Random RPC.

We store Ethos’ filesystem on Dom0 at /var/lib/ethos/domainName. Thus this directory on

Dom0 is equivalent to Ethos domainName’s /. We use this to our advantage; Ethos applications

are presently cross-compiled using a Go compiler that runs on Linux. Installing a program is

a matter of copying it to /var/lib/ethos/domainName/programs/. We also have all of the tools

available to us in Linux when we need to initialize or repair the directories and files that make

up an Ethos filesystem.

D.2.4 Mixins and libraries

We have written much of the code in Ethos in the form of libraries. Many functions useful

in the kernel are also useful in user space. For example, we have a string manipulation library

that is linked both into the kernel and into our user-space C library. Our abstract data type

library provides another example. Some of this code is used in the Ethos kernel, Ethos user

space, and Linux user space. We wanted to maximize this code reuse, but found some functions
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to be problematic. For example, what if a function needs to print a value (perhaps to facilitate

debugging)? This is a very different operation whether taking place in the Ethos kernel or user

space.

To solve this dilemma, we write mixins (named after the term’s use in object-oriented

programming). Mixins are small functions that perform kernel- or user-space-specific work. We

have written a mixin library for the Ethos kernel, Ethos user space, and Linux user space. To

solve the dilemma above, one must simply link against the appropriate mixin library. Each

such library provides a different mixinPrint function, whose existence is assumed by any of

our libraries that must print a value. Other mixin functions provided include mixinExit and

mixinGetTimeOfDay.

Many of our libraries can be tested independently of their use in the Ethos kernel. For

example, we extensively tested and profiled using gprof our allocator, libxalloc, long before we

integrated it into the Ethos kernel. Furthermore, several of the libraries that we link into the

Ethos kernel have unit tests we run independently of the kernel. Our RPC encoding library,

libetn, has 34 unit tests and 42 benchmarks, each of which run outside of the kernel. We have

found it beneficial to perform such tests outside of the kernel, because user space is a much

more forgiving environment.

D.2.5 System testing

So far, we have discussed testing libraries before we link them into the kernel. Here we

discuss system testing. The testing of the Ethos kernel is made easier because Ethos runs within

Xen. We have written a series of tests that exercise the system calls that Ethos provides. For
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each test, a script runs in Dom0 that sets up the environment for the test. Then, the script

boots Ethos which executes a test application. After the test application makes one or more

system calls it exits, and the Dom0 script checks its results. Thus each test is automated: we

generally run all 73 of our tests in series to help detect regressions during development. We

have found the ability to run these focused, automated tests to be another benefit of developing

on top of Xen.

D.2.6 Library operating systems

The Flux OS Toolkit (OSKit) [195] provides a reusable, low-level OS infrastructure that can

serve as the basis of new research OS kernels. The idea behind OSKit is that existing modular

components can be combined with novel components to produce a new OS. One interesting

line of research would be to reimagine OSKit as a Xen-based augmentation to MiniOS. The

obvious disadvantage of our approach to using MiniOS is that our modifications to the kernel

make it difficult to merge future MiniOS work back into Ethos. Breaking MiniOS into a series

of OSKit-like components would encourage additional research into custom kernels, and would

allow those kernels to more easily incorporate new developments in MiniOS.

D.3 The impact of virtualization on assurance

One of the reasons we chose to target the Xen VMM over other virtualization platforms is

because Xen is a bare-metal hypervisor. This is beneficial from an assurance point of view as

it removes a full intermediary OS from between the VMM and hardware. However, assurance

concerns do arise in the current implementation of Xen.
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Xen’s privileged domain, Dom0, has direct access to (1) hardware I/O devices and (2) the

memory of other VMs [196]. To reduce vulnerabilities due to (1), Ethos encrypts data sent

to communication devices and filesystems [197]; similar techniques could secure keyboards and

displays [198]. Vulnerabilities from (2) arise from DMA accesses (which use physical addresses)

and because Dom0 has the ability to migrate VMs. In the former case, an I/O Memory

Management Unit (IOMMU) can preserve confidentiality and integrity. In the latter case, Xen

could encrypt VM pages prior to Dom0 access. Thus these security risks could be largely

mitigated. An exception is availability, but unlike failures in confidentiality and integrity,

availability failures are always apparent.

Another problem that arises from virtualization in general affects cryptography. Restarting

a virtual machine snapshot can lead to the hosted OS using the same randomness twice, and

this has been shown to render cryptographic protections vulnerable to attack [199]. Defenses to

these attacks include disabling virtual machine snapshotting and using hedged cryptographic

operations.

The size of Xen’s code base and its exposure to Dom0 currently are impediments to building

a highly secure implementation of Ethos. Orthogonal work to reduce vulnerabilities in Xen,

disaggregate Dom0 [200; 201], produce alternative hypervisor technologies (e.g., Nova [202]),

and verify hypervisors (e.g., MinVisor [203]) will improve the base on top of which our current

research prototype is built.
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ETHOS CODE BASE

To ensure its protections are sound, Ethos must be properly implemented. Towards this

goal, the Ethos environment is engineered to remain small, even while consolidating security

services. Indeed, Ethos reduces the TCB when compared to other systems by moving critical

components into the OS, thereby minimizing replication. This is in contrast to minimizing the

OS but then requiring much of the TCB to be implemented in applications.

As previously mentioned, targeting VMMs helps keep Ethos small, and we have also carefully

chosen a small set of interfaces to export. We found further code reductions through the use

of Etypes. Replacing our original hand-written RPC code in the Ethos kernel with Etypes-

machine-generated code added 1,124 but removed 1,778 LoC, a net reduction of 654 LoC. More

importantly, using machine-generated code reduces the hard-to-isolate bugs often resulting from

RPC interface changes.

Our use of Etypes brings libetn, et2g, and eg2source into Ethos’ TCB. The lines of code

associated with each Etypes component are listed in Table XXI. Etypes’ language support is

less than 25% the size of ONC RPC, even though it supports both C and Go. Thus Etypes is

small, and the protections described in Chapter 6 justify adding Etypes to the TCB.

Applications also save many lines of code through the use of ETN. For example, we ob-

serve that existing mail user, transfer, and delivery agents require an implementation of several

parsers, including for SMTP message envelopes, IMF message headers, and Multipurpose In-
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TABLE XXI: Lines of code in Etypes (total 6,160) and ONC RPC (total 25,848)

Component C Go Template YACC

E
ty

p
es libetn 1,278

et2g 826 329

eg2source 1,407 2,320

O
N

C

libtirpc 15,105

rpcbind 5,264

rpcgen 5,479

TABLE XXII: Lines of code in selected libcamel components

Component Purpose LoC

MIME Parse MIME 13,381

SMTP Interact using SMTP 1,487

POP3 Interact using POP3 2,958

libxml2 Parse XML/HTML 136,362

ternet Mail Extensions (MIME). Furthermore, configuration files also require parsing. These

requirements increase application size. We reviewed libcamel [204], a library that implements

many mail-related encoders (SMTP, POP3, MIME) and parsers (XML/HTML), and summa-

rize its over 150,000 lines of code in Table XXII. Its encoders/decoders support communication

and storage; its parsers are for languages which are used in networking for both clients and

servers.

Tools such as bison and PADS [205] exist to aid in writing parsers. They clearly reduce

parser costs, and they are useful on Ethos too when parsing is a necessity. However, Etypes

goes further to both reduce code and provide type safety guarantees on all input and output.
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Table XXIII provides a full LoC analysis of Ethos, and Table XXIV shows the lines spent

within the kernel’s networking facilities. The Ethos kernel is presently made up of 37,403

LoC, excluding its cryptographic library. Of this, 1,163 lines implement fdSend, fdReceive,

and authenticate. The advertise, import, and ipc system calls spend 1,502 lines, and Ethos’

MinimaLT stack including MinimaLT, UDP, IP, and Ethernet spends 3,787 lines. Another

49,512 LoC come from NaCl, the cryptographic library used in Ethos, which has been carefully

verified [206]. Although much smaller than Linux, our research prototype is larger than the

seL4 and HiStar microkernels [207; 16].

If Ethos’ design eventually proves to have sufficient strength and usability, it will be desirable

to reimplement the Ethos research prototype in a way which can result in high assurance. This

includes a microkernel implementation [26; 27; 28; 29; 30; 31], a minimalist VMM, and proof

of correctness [207]. (As we begin this work, we may also find it time to reimplement some of

the components described in Appendix D in a more traditional way.) Given that we are still

working on user-space evaluation, such a reimplementation would be premature—our strategy

has allowed us to focus on our research interests.
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TABLE XXIII: Ethos project lines of code analysis

Lines of code

Project Use C Asm. Go ETN YACC

NaCl
The NaCl cryptographic li-
brary

15,779 33,733

Dual libraries
C libraries that are used both in
the Ethos kernel and user space

18,465 150

Kernel
Non-library C code that makes
up the Ethos kernel

17,846 942

Kernel support
Linux utilities that directly
support a running Ethos kernel
(e.g., shadowdæmon)

1,738

Go port Port of Go to Ethos∗ 145,980 6,169 265,938 5,115

ETN tools
ETN compiler and code gener-
ator

6,355 339

C libraries
C libraries for use in Ethos user
space

1,966

Go generic packages
Go packages for use in Linux or
Ethos user space

212

Go packages
Go packages for use in Ethos
user space

671

Programs
System programs distributed
with Ethos

81 19 2,038 376

∗The GNU patch unified context diff beween our Go and Go r60.3 is 6,075 lines; many of the standard
Go packages are not compatible with Ethos, but their line counts are included here
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TABLE XXIV: Kernel Lines of Code spent to provide network facilities

Kernel component C lines of code

MinimaLT implementation (without NaCl) 3,787

advertise, import, and ipc system calls 1,502

authenticate system call 688

fdSend and fdReceive system calls 475

sign system call 424



AFTERWORD

I remarked during my dissertation defense that evaluating security is difficult. I think other

researchers have struggled with this, primarily because security deals with the interaction of

systems, policy, and—most consequentially—humans. It had occurred to me that this evalua-

tion is subjective, and therefore required more than the typical engineering approach. We had

spent a lot of time reducing Ethos to the simplest and smallest set of interfaces possible, that

is, identifying the essence of what a system must do, and then designing it to do just that. I

stated to my audience that we ought to begin collaborating with poets, and this was taken with

a good deal of humor, given that it contrasted with my typical temperament. Following the

deliberation of my committee, I was met with a single condition placed on my graduation—I

must summarize my dissertation with a Haiku. Thus I close this work with:

Ritchie had it right,
but its grown far too complex.
Wise of old, clean slate.
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