
Simple-to-use, Secure-by-design Networking in Ethos

W. Michael Petullo
University of Illinois at Chicago

mike@flyn.org

Jon A. Solworth
University of Illinois at Chicago

solworth@rites.uic.edu

ABSTRACT
We describe networking in Ethos, a clean-slate operating
system we designed to meet the security requirements which
arise on the Internet. Through careful layering, Ethos makes
network encryption, authentication, and authorization pro-
tections compulsory. This means that application develop-
ers can neither avoid nor incorrectly use them, and system
administrators need not audit their use. We show through
a case study how Ethos reduces application complexity and
makes it easier to write and deploy robust applications.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection

Keywords
Authorization, software layering

1 Introduction
It is surprisingly difficult to write and configure software to
provide isolated, authenticated, and authorized networking
which is sufficiently robust. Robustness measures the ability
to withstand attack; to be effective, it must be commensu-
rate with the threat level. The threat level found on the
Internet is very high—as evidenced by the large number and
broad range of successful attacks. Attacks routinely target
weaknesses in isolation, authentication, and authorization.

It is not merely that the current state of affairs takes too
much work. System complexity fundamentally limits the
level of assurance possible. Ultimately, high assurance levels
are possible only if a system has low complexity and security
is part of its initial design. Unfortunately, existing systems
are very complex and were designed in a time of low security
requirements. They have accreted functionality over time,
resulting in extraordinarily difficult-to-understand systems
and, therefore, security holes.

This paper describes the design and implementation of
networking in Ethos, an experimental Operating System
(OS) with security as its primary goal. Ethos is a clean-slate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSec’13 April 14 2013, Prague, Czech Republic
Copyright 2013 ACM 978-1-4503-2120-4/13/04 ...$15.00.

design; its software layering is carefully engineered to meet
security requirements. A clean-slate design enables Ethos
to be far simpler, provide new semantics, and avoid existing
error-prone interfaces. Existing mechanisms are routinely
misused, even by competent, well-intentioned programmers
and administrators [10, 9, 6].

We focus on the interfaces available to application pro-
grammers and system administrators. We will show that
Ethos provides the following properties:

P1 A system model which guarantees confidentiality, in-
tegrity, and authentication of networking, independent
of applications (§4.3).

P2 Complete mediation (authorization) of all network
connections (§4.4).

Ethos protections are compulsory, meaning that applica-
tion developers cannot avoid or incorrectly use them, and
system administrators need not audit their use.

P1 is a guarantee to application programmers. As we
will discuss in §2, use of Transport Layer Security (TLS)
is often discretionary. Alternatively, Internet Protocol Se-
curity (IPsec) can be made compulsory, but in general an
application developer cannot know if his application will be
used with IPsec. Consequently, application code must be
provided for network authentication and encryption. In con-
trast, Ethos’s system calls guarantee these protections for all
applications, with zero lines of application code.

P2 is a guarantee to administrators that builds on P1.
Ethos’ authorization policy is mandatory, simple, and pow-
erful. Because the Ethos kernel performs network authenti-
cation, it can fully mediate network connections. Whereas
the system-wide authorization policy of existing systems has
difficulty governing remote users (because they are authen-
ticated by applications), Ethos equally regulates both local
and remote users.

Application programmers need better abstractions to help
them avoid the security pitfalls which result in security holes.
System administrators need to understand and control their
systems; it must take less work to secure systems against
attack. We evaluate the effect of both P1 and P2 against
these goals.

In the remainder of this paper, we discuss related work
(§2), our threat model and the resulting security require-
ments (§3), the design of networking in Ethos (§4), and an
evaluation of Ethos’ design and implementation (§5). Our
evaluation contains a case study that compares an Ethos
messaging program to Postfix.

2 Related work

TLS (previously Secure Socket Layer) provides crypto-
graphic network protections above the transport layer and
is normally implemented as a user-space library. In general,
each application is individually configured to use TLS. Even
well-meaning developers routinely misuse TLS Application
Programming Interfaces (APIs) to the detriment of security
[10, 9]. TLS can optionally provide user-level authentication
when using client-side certificates but leaves authorization to
application logic. Ethos forgoes backwards compatibility to
provide a simpler, less mistake-prone platform.

Like Ethos, tcpcrypt [2] investigated ubiquitous en-
cryption, but it maintains backwards compatibility with
TCP/IP. Tcpcrypt provides hooks that applications may use
to provide authentication services and determine whether
a channel is encrypted. This approach differs from that of
Ethos, which is clean-slate and subsumes authentication and
encryption services in its system calls to ease assurance.

IPsec provides very broad confidentiality and integrity
protections because it generally is implemented in the OS
kernel. IPsec’s major shortfall is that its protections stop
at the host; it focuses on network encryption and host au-
thentication/authorization. For example, IPsec does not au-
thenticate or restrict users across the network.

Security-Enhanced Linux (SELinux) is a mandatory ac-
cess control enforcement system for Linux [14] that has tra-
ditionally focused on enforcing an authorization policy on a
single machine. IPsec and SELinux have been combined to
produce labeled IPsec, which provides more comprehensive
network protections [12]. Ethos’ co-designed system call in-
terface and authorization system results in significantly sim-
pler policy specification than with SELinux.

Many application architectures have adopted Multics’
principle of least privilege [4]. Such techniques isolate sen-
sitive code and unify authorization policy; they are use-
ful on Ethos too. However, Ethos goes further because
it identifies security properties that should be shared by
all applications—regardless of design—and turns them into
system-wide guarantees.

Distributed firewalls overloads POSIX networking APIs
(connect and accept), providing kernel-based, user-aware en-
forcement of a distributed authorization policy [11]. Ethos
was inspired by this approach and adds transparent encryp-
tion and authentication to its networking system calls (§4.3).
The Strongman architecture [13] addresses multiple, over-
lapping security mechanisms which complicate system ad-
ministration. Like Strongman, Ethos identifies users by
their public key.

Plan 9 implements its security in two layers: the kernel
and factotum [5]. Authentication and key management are
handled by factotum, a per-user agent that supports a wide
range of authentication protocols. Once factotum has au-
thenticated a user and established a shared key, the key may
be used to encrypt communication using OS-based TLS;
Plan 9 provides user space access to its encryption routines
through a pseudo device. However, the use of both factotum
and network encryption remain discretionary—an applica-
tion need not use them. In contrast to Plan 9, Ethos always
encrypts and authenticates network connections regardless
of application code.

HiStar provides a simplified, low-level interface and imple-
ments mandatory information-flow constraints, providing a

Unix layer for compatibility [19]; DStar builds on HiStar
to provide information flow across hosts on a network [20].
Ethos also provides a simplified interface, but it focuses on
aiding application developers by providing a high level of
abstraction. Thus developments in HiStar and Ethos are
complimentary: HiStar’s Unix layer could be replaced with
Ethos’ higher abstractions, and Ethos could adopt many of
HiStar’s contributions to flow control.

3 Threat model
The attacker considered here has very broad access: he can
run applications on the Ethos host, including malicious soft-
ware; control remote hosts and other unprivileged virtual
machines; and control network media. Using these capa-
bilities, he can attempt to violate an Ethos host’s security
policy by observing network packets, deploying counterfeit
services, or making odd requests to Ethos-hosted services.
We assume the attacker is highly skilled; we are especially
concerned with his ability to exploit inadvertent application
or configuration errors with respect to network protections.
An attacker might have a local user account.

Some threats are beyond the scope of this paper. A
trusted application programmer with malicious intent could
corrupt a security-sensitive application while it is being writ-
ten. We will describe how Ethos’ authorization restricts such
a program, but the program could still corrupt data that it
must be authorized to manipulate. System administrators
likewise present a particular concern. Thus administrative
and security-sensitive software development processes must
be protected using external means. Covert channels and
crooked hardware are also beyond this paper’s scope.

4 Design
We discussed the complexity of programming and configur-
ing current systems in §2, and we will provide a concrete,
in-depth example in §5. Here we introduce Ethos and dis-
cuss the three strategies that influenced Ethos’ design:

S1 Developers use a simple API.

S2 Application errors cannot cause a failure in (1) network
encryption, (2) the authentication of remote princi-
pals, or (3) authorization controls.

S3 Security configuration requires only configuring and
populating (1) a user database and (2) an authoriza-
tion policy. The database and policy are universal, i.e.,
sufficient for each application on a Ethos system.

4.1 Encryption

Ethos encrypts all network communication to provide con-
fidentiality and integrity. All communication between a
pair of hosts flow within a single cryptographic tunnel, and
Ethos multiplexes application connections within these tun-
nels. Ethos establishes a tunnel when an application re-
quests the first connection to a new host. To establish a
tunnel, an Ethos client includes a public key and nonce in
the first packet sent to a server (the client knows the server’s
public key by the authentication database described below),
and both parties establish a symmetric key using Diffie-
Hellman (DH) key exchange.

Because Ethos’ network encryption is implemented in the
kernel, an Ethos application cannot prevent networking from
being encrypted. In contrast, traditional techniques im-
plement functionality by libraries. Libraries share address

space with their applications, so application failures can
cause protections to be bypassed.

4.2 Authentication

Within host-to-host encrypted network tunnels, Ethos iden-
tifies the user associated with an individual connection by
using a public-key-based authenticator. If the receiving host
is able to verify the authenticator, then this host associates
the user’s public key with the network connection.

Configuring Ethos to know every principal is clearly im-
practical. Given Ethos’s universal authentication and the
scale of the Internet, a mechanism is needed to authorize
communication with unknown parties. Consider a remote
stranger, an individual who is not known a priori to an
Ethos system (i.e., he does not exist in Ethos’ local database
or distributed PKI, so Ethos does not know his real-world
identity). Like a traditional user, a stranger can generate a
key pair and attempt to communicate with an Ethos system.
In some cases, a client user may even choose not to provide
any authenticator at all; the server treats such a connec-
tion as anonymous and assigns the user a random identifier.
(Unlike with strangers, this identifier is not persistent across
connections.) Whether Ethos accepts a given stranger or
anonymous connection request is a matter of authorization.

4.3 The Ethos network system call interface

For all Inter-Process Communication (IPC)—including
networking—Ethos uses a single mechanism, whereas
POSIX provides sockets, pipes, message queues, shared
memory, and signals. Ethos’ mechanism is made up of the
advertise, import, and ipc system calls.

serviceFd ←advertise(serviceName)

To register the intent to provide a service, an Ethos appli-
cation calls advertise. The argument to advertise is a service
name, which we describe in §4.4.

netFd, user ←import(serviceFd)

The import system call takes as an argument a service file
descriptor that was obtained from a previous call to adver-
tise. Import returns a network file descriptor and remote
user.

netFd ←ipc(serviceName, host)

An ipc call attempts to make an encrypted connection
to a service. This system call takes two parameters: ser-
viceName—the service name to connect to—and host—the
remote host name. Setting host to nil implies a local connec-
tion; otherwise, Ethos resolves (using either a local database
or trusted PKI) host to an Internet Protocol (IP) address
and public key as a part of servicing the system call.

Read reads an object from a file descriptor. Peek behaves
like read but does not remove the object from the file descrip-
tor’s stream. Write adds an object to a stream. Beyond the
scope of this paper is Ethos’ type system which allows read
and write to automatically deal with architecture-specific is-
sues of endianness, word size, and alignment.

For our case study we need two more system calls: fd-
Send, and fdReceive. These system calls concern virtual
processes, which are processes fabricated on-demand as the
result of an fdSend. There is at most one virtual process exe-
cuting per virtual executable-user pair. fdSend sends a tuple

of file descriptors fd to the executable program (i.e., an ex-
ecutable file in Ethos’ filesystem), which runs as a virtual
process owned by the specified user.

fdSend(fd[], user, program)

If program is already running on behalf of user, then Ethos
will provide it with the file descriptors. Otherwise, Ethos
will execute program, running as user, before doing the same.
The resulting virtual process calls the corresponding system
call, fdReceive, to receive the file descriptors.

fd ←fdReceive()

4.4 Authorizing system calls

Ethos integrates Discretionary Authorization Control
(DAC) and Mandatory Authorization Control (MAC)
in its Language for Expressing Authorization Properties
(LEAP) [18]. Ethos has fewer, more abstract system calls
than traditional OSs. This simplifies authorization policy
specification compared to, for example, SELinux. Addi-
tionally, Ethos’ authorization system has more information
available to it. In particular, Ethos can make authorization
decisions based on a remote user because network authenti-
cation is performed by the OS.

Ethos associates all network connections with a special
filesystem node called a service name. Passing s as the ser-
vice string argument to advertise and ipc corresponds to the
filesystem path /services/s. Unlike TCP/UDP port num-
bers, which have a very small name space and thus must be
reused, Ethos network service names are unbounded. Hence
each name is one-to-one with a service, simplifying autho-
rization. Ethos can also differentiate security-levels by ser-
vice name, so that, for example, Top Secret mail might
use a different name than unclassified mail.

Ethos objects—including files, directories, program exe-
cutables, and service names—bear a label. LEAP regulates
the operations subjects—user/program pairs—can invoke
on objects. The LEAP permissions we will discuss here are:

c create a file
r read a file descriptor
w write a file descriptor
x execute a program

adv advertise/import a service
ipc ipc to a service

fdS send a file descriptor to a process

LEAP grants permissions as follows, where r is a permission
(e.g., read here); l is an object label; p is a program label;
and G is a group, defined by a set of user public keys:

r(l) = [p,G]

For user u with key pku ∈ G, we simplify the conjunction:

r(l) = [p,G] ∧ pku ∈ G

to the more concise:

p, u → r(l)

to mean that p, when running on behalf of u, has r(l). In
specifications, group names are written gs.G. To support
DAC semantics a special group notation, gs{$}.G, indicates
a group specific to the owner of the object in question.

LEAP also specifies two restrictions, which resemble per-
missions. These are in, a restriction on the users who may
connect to a local service, and out, which restricts the re-
mote hosts that may provide a service to local programs.

Thus in governs advertise/import and out governs ipc. Both
of these restrictions apply to labels, but describe host groups
(out) or user groups (in) instead of subjects. For example,

in(l) = U

restricts services labeled l so that they may be accessed only
by users with public keys in U . We will now describe the
permissions needed by various operations.

ipc On the client side, an administrator may restrict to
which services and hosts a subject may connect. As we
have discussed, networking-related permissions are derived
from filesystem nodes, contributing to consistent authoriza-
tion mechanisms. An outgoing connection to the host h for
the service with label l requires:

p, u → ipc(l) ∧ h ∈ out(l).

Ethos’ host protection is stronger than IP address-based re-
strictions because it cryptographically authenticates servers.

advertise and import On the server side, Ethos restricts
advertise and import. Ethos performs user authentication at
the system layer; if import returns, Ethos has authenticated
the remote user and he is authorized to connect to the given
service. As mentioned before, authorizing strangers allows
even previously unknown users to maintain a unique user
ID. To advertise the service labeled l and import a connection
from the remote client user uc requires:

advertise: p, u → adv(l)

import: p, u → adv(l) ∧ uc ∈ in(l).

fdSend/fdReceive To fdSend a file descriptor to a pro-
gram labeled l requires p, u → fdS(l). The fdReceive call
requires no special permission. Any virtual process may re-
ceive a file descriptor using fdReceive, but successive reads
and writes are subject to access controls.

read/peek/write The read and peek calls require p, u →
r(l), and write requires p, u → w(l).

5 Evaluation

Our evaluation focuses on the security of Ethos. We wrote a
very simple but robust messaging system, eMsg, to study the
security properties that result from Ethos’ networking API.
Throughout this case study, we compare eMsg to Postfix
2.8.7, a popular email server. Postfix’s primary author is a
security expert; thus we consider Postfix as a rough upper
bound on large POSIX network application quality.

5.1 Programming

Postfix has many more features than eMsg, so we focus on
comparing how each attempts to make use of the network in
a secure way. POSIX provides much weaker security guaran-
tees than Ethos and its API is more complex. Both of these
factors complicate developing and configuring services.

Postfix (POSIX) Postfix is made up of several programs
so that each may be granted minimal privileges. We focus
on how Postfix receives a message from an authenticated
sender and delivers it to a local user’s incoming spool. Here
the key components are: master which runs as root and
executes other programs on demand; smtpd which runs as
the pseudo user postfix, accepts SMTP connections, and
enqueues messages received; qmgr which runs as the pseudo
user postfix and manages the message queue; and local
which transitions its effective UID between postfix and the
message recipient in order to deliver mail to the recipient’s
incoming mail spool. To support this functionality, local
maintains a real UID of root.

For security, application developers need to get network
authentication and encryption right. Programmers must
properly invoke security libraries and must choose appro-
priate cryptographic parameters, including algorithms and
key size. Mechanisms such as seteuid are also troublesome—
seteuid semantics are complicated and its use is susceptible
to attack [3].

For encryption, Postfix relies on the OpenSSL library.
This library is invoked in several modules. We count only
OpenSSL function calls rather than all encryption-related
Lines of Code (LoC), because it is difficult to isolate the lat-
ter from total LoC. Postfix makes 98 calls of OpenSSL func-
tions (those that start with BIO , ERR , SSL , or X509). We
estimate that at least six LoC are needed for each of these
function calls to set up parameters and deal with error con-
ditions, resulting in almost 600 lines of application code to
invoke OpenSSL.

We used a hybrid approach to measure the complexity of
the use of Cyrus Simple Authentication and Security Layer
(SASL) network authentication in Postfix. First, there are
987 LoC in Postfix’s xsasl directory; this code’s single pur-
pose is authentication (we excluded Dovecot SASL LoC).
Then, we found 12 calls of functions beginning with xsasl in
the rest of the code. Including OpenSSL calls, almost 2,000
lines of application code are needed to protect networking.

Significant application code to support robust networking
is not unique to Postfix. Another study found that 9,000
LoC or 37% of the Internet Message Access Protocol (IMAP)
service code in Dovecot was dedicated to network confiden-
tiality, integrity, and authentication [16]. Similar patterns
emerge when examining most servers that are designed to
run on POSIX.

A failure in any of the Postfix code described above could
result in a lack of network encryption, weak network encryp-
tion, or incorrect authentication. Particularly dangerous is
smtpd (because it directly interacts with the network) and
local (because it can activate root privileges via seteuid).
These programs are 9,100 and 2,500 LoC, respectively; mit-
igating the risk they pose requires extensive code auditing.

Failures in such code are common occurrences. Encryp-
tion, authentication, and authorization-related failures ac-
counted for 9 of CWE/SANS’ Top 25 Most Dangerous Soft-
ware Errors in 2011 [15]. The US National Vulnerabil-
ity Database lists over 50 flaws found in or in the use of
OpenSSL in the last three years. Postfix itself was recently
affected by a security flaw due to its misuse of TLS [6].
Fixing this flaw in Postfix does not guarantee that it does
not exist in another application—Pure-FTPd and the Cyrus
IMAP server [7, 8] were later found vulnerable.

eMsg (Ethos) Figure 1 contains a pseudo-code listing of
eMsg, followed by a diagram depicting the system’s process
interaction. We wrote eMsg in Go and it contains 698 LoC.
The actual code contains error handling, but for brevity the
pseudo code does not.

Ethos provides network protections at the system layer;
thus eMsg itself dedicates zero LoC to network confiden-
tiality, integrity, authentication, and authorization. eMsg is
made up of five programs, four of which demonstrate Ethos’
network protections: MsgWrite is used to compose a mes-
sage and store it in the sender’s outgoing spool. MsgSend
is a virtual process that is either invoked by msgWrite or
every ten minutes. MsgSend delivers outgoing messages to
a remote msgDistributor. MsgDistributor accepts messages

1 msg ← readMsgEnteredByUser ()
2 wr i t eVa r (”˜/ out /” + ge t t ime () , msg)
3 fdSend ([FdNul l] , g e t u s e r () , ”msgSend ”)

(a) Client, msgWrite

4 do f o r e v e r
5 wa i t on f dRe c e i v e () o r beep (600)
6 f o r f i l e n ame i n ”˜/ out ”
7 msg ← readVar (f i l e n ame)
8 netFd ← i p c (”msg ”, msg . To . Host)
9 w r i t e (netFd , msg)

10 r emoveF i l e (f i l e n ame)

(b) Client, msgSend

11 l i s t e n F d ← a d v e r t i s e (”msg ”)
12 do f o r e v e r
13 netFd , u s e r ← impor t (l i s t e n F d)
14 msg ← peek (netFd)
15 fdSend ([netFd] , msg . To , ”msgRece ive ”)

(c) Server, msgDistributor

16 do f o r e v e r
17 f d ← FdRece ive ()
18 msg ← r ead (fd)
19 wr i t eVa r (”˜/ i n /” + ge t t ime () , msg)

(d) Server, msgReceive

m
sg

W
ri

te

m
sg

S
en

d

m
sg

D
is

t.

m
sg

R
ec

ei
v
e

3: fdSend
5: fdRcv 8: ipc

13: import 15: fdSend
17: fdRcv

9: write
18: read

(e) Process interaction, with corresponding line numbers

Figure 1: eMsg application in pseudo code

received over the network, peeks at the recipient, and exe-
cutes msgReceive with the recipient’s credentials. MsgRe-
ceive runs as a virtual process with the recipient’s creden-
tials and writes incoming messages to the recipient’s spool.
MsgView displays the messages in a user’s local incoming
spool. It does not directly interact with the network, hence
its listing is not included in Figure 1.

A user runs msgWrite to create a message. msgWrite writes
the message to the user’s outgoing spool and notifies ms-
gSend of the outgoing message via fdSend (Line 3). The
purpose of this fdSend is to wake up the receiving process.

MsgSend calls fdReceive and beep (a timer) and then
blocks until one of the system calls completes (Line 5). In
either case, msgSend reads the user’s outgoing spool and at-
tempts to send each message over the network by calling
ipc and write (Line 9); this communication is protected by
Ethos’ implicit encryption.

To receive a message, msgDistributor listens for connec-
tions to the “msg” service. As described before, import
(Line 13) returns only for authorized remote users. When
import does return, msgDistributor calls peek to obtain the
recipient of the message without disturbing the stream. Ms-
gDistributor then uses fdSend (Line 15) to pass the network
file descriptor to msgReceive, a virtual process running on
behalf of the recipient which writes the message to the re-
cipient’s spool.

Of the components in eMsg, only msgDistributor needs to
have its code audited for the security considerations dis-
cussed here, but msgDistributor is very simple—35 LoC.
The audit must show that the program always calls fdSend
(Line 15) with the recipient as the user argument. A vio-
lation would cause a message to be delivered to the wrong
recipient. As we discussed, the corresponding Postfix audit
requires examining over 11,600 LoC.

5.2 System administration

Even organizations with many skilled administrators fail to
protect their systems [17]. Thus simplifying system admin-
istration is also a key goal of Ethos.

Postfix We focus on configuring a subset of Postfix’s
functionality—setting it up to receive mail using SMTP—
and pay attention only to security configuration decisions.

Assuming 400 words per page, Postfix’s TLS documenta-
tion [1] spans some 30 pages. Properly configuring Postfix to
require TLS—including client-side certificate verification—
and restricting TLS to use only strong cryptographic ciphers
and protocol versions requires nine configuration points.
Misconfigurations can result in accepting connections not se-
cured by TLS, accepting clients with improper credentials,
or employing weak encryption algorithms or protocols.

Postfix uses SASL for authentication, and its SASL doc-
umentation is approximately 16 pages long. The configu-
ration of SASL requires five configuration points in Post-
fix and several in Cyrus SASL. Here misconfigurations can
result in passing secret authentication credentials over an
unencrypted channel or accepting a connection without au-
thentication.

Next, an administrator must configure the authentication
database used by Cyrus SASL. This is generally done using
Pluggable Authentication Modules (PAM) which has its own
configuration parameters. Misconfiguring PAM can result in
authentication failures. In general, variations of all of these
steps must be repeated for each server installed.

Finally, an administrator must configure the system’s au-
thorization policy to restrict Postfix. On Linux, this includes
installing and possibly modifying a distribution’s SELinux
policy. The reference SELinux policy distributed by Tresys
in July of 2011 contained 650 lines in its Postfix module.

Ethos authorization On Ethos, the only security
settings are the authorization policy and authentication
database. The system administrator reads two pages of
eMsg documentation, which describes the file paths used (for
both files and networking) and suggests how they should be
protected. While the administrator must also learn LEAP,
LEAP applies equally to every application. Thus we focus
on authorization policy specification.

Figure 2 describes an authorization policy for the eMsg
components which we described in §5.1. Figure 2a shows
the filesystem labels associated with eMsg. The terminal at
which a user writes and views messages bears the label termi-
nal. eMsg places outgoing messages in an outgoing spool di-
rectory, labeled spoolOut; the incoming spool directory bears
the label spoolIn. Each program has a program-specific label
(e.g., msgWrite bears the label msgWrite). We described the
correspondence between a service name and filesystem node
in §4.4; here the node bears the label svcMsg.

Figure 2b lists a simplified version of the corresponding
LEAP policy (without label or group definitions). The pol-
icy references two group sets, ug and hg, respectively collec-

tions of users and hosts. Each of these group sets contains
two groups, in and out, concerning incoming and outgoing
connections. The actual policy is 30 lines, plus lines for
defining group membership.

First, the policy regulates msgWrite. When run by a user
in group ug.out, msgWrite can read a message that a user
enters at the terminal (Line 2), write the message to the
outgoing spool (Lines 3 and 4), and invoke msgSend as a
virtual process (Line 5). Here the notation ug{$}.out further
qualifies permissions; msgWrite, running on behalf of some
user u, may create or write only to directories owned by u.
(label spoolOut and pku ∈ ug.out must still be satisfied.)

Path Label

Terminal terminal
Each program Program name
/user/user/out/* spoolOut
/user/user/in/* spoolIn
/services/msg svcMsg

(a) eMsg LEAP filesystem labels; spool queues are per user

1 x (msgWrite) = [s h e l l , ug . out]
2 r (t e rm i n a l) = [msgWrite , ug . out]
3 c (spoo lOut) = [msgWrite , ug{$ } . out]
4 w(spoo lOut) = [msgWrite , ug{$ } . out]
5 fdS (msgSend) = [msgWrite , ug . out]

6 r (spoo lOut) = [msgSend , ug . out]
7 i p c (svcMsg) = [msgSend , ug . out]
8 out (svcMsg) = hg . out
9 w(svcMsg) = [msgSend , ug . out]

10 x (msgDist) = [i n i t , nobody]
11 adv (svcMsg) = [msgDist , nobody]
12 i n (svcMsg) = ug . i n
13 r (svcMsg) = [msgDist , nobody]
14 fdS (msgRecv) = [msgDist , nobody]

15 r (svcMsg) = [msgRecv , ug . i n]
16 c (s p o o l I n) = [msgRecv , ug{$ } . i n]
17 w(s p o o l I n) = [msgRecv , ug{$ } . i n]

(b) LEAP specification (msgView not shown)

Figure 2: eMsg authorization policy
Lines 7–9 allow msgSend’s use of ipc and write; the pro-

gram can connect and write to the service labeled svcMsg if
running as a user in ug.out. Line 8 restricts the eMsg servers
msgSend may connect to to those in the group hg.out.

On Line 12, the policy restricts incoming connections to
those originating from users in ug.in; such principals are
cryptographically authenticated by Ethos. Of note in the
remainder of the specification are Lines 16 and 17, which
ensure msgReceive writes only to the recipient’s own spool.

6 Conclusion and further work
Ethos provides network security with zero lines of applica-
tion code. In contrast, Postfix requires almost 2,000 lines
of security-sensitive code. Ethos’ networking system calls
implicitly invoke encryption, authentication, and authoriza-
tion, thereby shrinking application code bases and reducing
their attack surface. An application programmer cannot fail
to invoke or incorrectly invoke these protections.

In Ethos, network security does not require any
application-specific configuration. Instead, system admin-
istrators configure a system-wide user database and an au-
thorization policy. This saves administrators from reading

application security configuration documentation (typically
dozens of pages), configuring services (typically dozens of
configuration points), and auditing thousands of lines of
code. System administrators can thus better secure applica-
tions and are less dependent on programmers for application
and overall system security.

Ethos’ more abstract systems calls give rise to a more ab-
stract authorization policy language. Ethos administrators
use LEAP to directly restrict actions performed by remote
users. This is in contrast to SELinux which requires co-
operation between properly-implemented application-based
network authentication and authorization policy.

We are beginning to shift our focus from kernel develop-
ment to user space. Projects underway include writing Go
packages to aid application development, designing a graph-
ics subsystem, and developing substantial applications. We
are focusing on particularly security-sensitive applications
which will most stress Ethos’ other security services, much
like we investigated networking here. This will allow us to
certify our design and ultimately reimplement and verify our
research prototype for high assurance.

7 Acknowledgments
This material is based upon work supported by the US Na-
tional Science Foundation under grant CNS-0964575. We
also thank Ameet Kotian for his early work on the Ethos
network stack, Wenyuan Fei for his work on Ethos’ authen-
tication infrastructure, and our anonymous referees.

8 References

[1] Postfix documents. http://www.postfix.org/documentation.html.

[2] Bittau, A. et al. The case for ubiquitous transport-level
encryption. In USENIX Security (2010).

[3] Chen, H. et al. Setuid demystified. In USENIX Security
(2002).

[4] Corbato, F. J. et al. Multics—the first seven years. In Spring
Joint Computer Conference (1972).

[5] Cox, R. et al. Security in Plan 9. In USENIX Security (2002).

[6] CVE-2011-0411. National Vulnerability Database, March 2011.

[7] CVE-2011-1575. National Vulnerability Database, May 2011.

[8] CVE-2011-1926. National Vulnerability Database, May 2011.

[9] Fahl, S. et al. Why Eve and Mallory love Android: an analysis
of Android SSL (in)security. In CCS (2012).

[10] Georgiev, M. et al. The most dangerous code in the world:
validating SSL certificates in non-browser software. In CCS
(2012).

[11] Ioannidis, S. et al. Implementing a distributed firewall. In CCS
(2000).

[12] Jaeger, T. et al. Leveraging IPsec for mandatory access
control across systems. In Proc. of the Second International
Conference on Security and Privacy in Communication
Networks (2006).

[13] Keromytis, A. D. et al. The STRONGMAN architecture. In
DISCEX (2003).

[14] Loscocco, P. and Smalley, S. Integrating flexible support for
security policies into the Linux operating system. In Proc. of
the FREENIX Track (2001).

[15] Martin, B. et al. 2011 CWE/SANS top 25 most dangerous
software errors. Tech. rep.

[16] Radhakrishnan, M. and Solworth, J. A. NetAuth: Supporting
user-based network services. In USENIX Security (2008).

[17] Rahman, H. A. et al. Identification of sources of failures and
their propagation in critical infrastructures from 12 years of
public failure reports. IJCIS 5, 3 (2009), 220–244.

[18] Solworth, J. A. and Sloan, R. H. Security property-based
administrative controls. In ESORICS (2004).

[19] Zeldovich, N. et al. Making information flow explicit in
HiStar. In SOSP (2006).

[20] Zeldovich, N. et al. Securing distributed systems with
information flow control. In NSDI (2008).

