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Abstract—Computer security is a tremendously challenging
area of engineering. Our society finds itself increasingly reliant on
computer systems, even while these systems regularly succumb to
malicious attacks. Thus we must better prepare future engineers
and scientists for the task of designing the new systems which
will remain robust despite the threat environment found on the
Internet. This paper suggests a new way to look at computer
security education. It first presents a number of common short-
comings in computer security education. Next, it applies Bloom’s
taxonomy of educational objectives to the domain of computer
security. Finally, it describes the educational experiences which
will maximally benefit computer security engineers and scientists
at the undergraduate level.

I. INTRODUCTION

The routine art in the field of computer software construc-
tion does not yet produce software which preserves confiden-
tiality, integrity, and availability when exposed to the Internet.
This is evident as researchers continually find exploitable flaws
in software which result in security vulnerabilities. The well-
publicized Heartbleed [22] and Shellshock [23] vulnerabilities
provide two examples, but the US National Vulnerability
Database categorizes thousands of other new security vul-
nerabilities each year. It is not just uninformed end users
who struggle with security. The best (and extraordinarily well-
funded) intelligence agencies in the world have acknowledged
that they consider portions of their networks compromised
[34].

Security is a very difficult engineering problem. Evidence
shows that the design flaws of systems confound the problem
more than implementation defects. For example, it has been
known for decades that trying to add security to an existing
software artifact without a fresh design is counterproductive
[13, 17]. Examples of design flaws include protections so
complex that they make configuration and verification exceed-
ingly difficult and protections that are omitted entirely. Yet
how to design seems less understood than the implementa-
tion techniques described by the literature, and design also
appears more dependent on Bloom’s higher-order educational
objectives.

The reason why design dominates implementation becomes
evident if we consider an implementation flaw—and perhaps a
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security vulnerability that might arise from it—as a program-
mer misunderstanding. Examples of misunderstandings in-
clude an ill assumption about the semantics of a programming-
language statement, an Application Programming Interface
(API), or the size of an array defined using an unsafe pro-
gramming language [2]. Programmer misunderstandings such
as these arise due to the complex nature of software, but
this complexity comes in two forms: essential and accidental
[9]. The latter results from design decisions, and thus design
decisions aid or hinder understanding.

For an example of a wise design decision, consider the
choice to move array bounds checking from individual pro-
grams into a programming language’s type system. This de-
cision reduces accidental complexity, as it transforms the task
of verifying the use of buffers in a number of applications
written in an unsafe language to the task of verifying a type-
safe programming language’s implementation. This is signifi-
cant because generally detecting buffer overflows using static
analysis is an undecidable problem [20]. Better management of
security problems involves envisioning better designs, and this
involves the analysis and evaluation of existing and candidate
designs against security requirements.

Too often, the results of mistakes in either design or
implementation come to degrade the robustness of computer
systems. The security of poorly-designed systems ends up
overly dependent on end users who as a result of defective
software must navigate through harsh security policy external-
ities and surprising software behavior. It is worth mentioning
that defects are defects. While an intelligent adversary might
more quickly cause a defect to manifest itself as a bug and
subsequently happen to use the bug to his advantage, the
defects that arise due to our insufficient understanding of
the software we craft would remain and eventually cause
malfunction even if the Internet were benign.

This paper is concerned about education. Education is the
prelude to the efforts of the programmer described above.
During the course of his education, a programmer must
internalize the implementation techniques he encounters so
that he is able to apply them to the requirements that arise
in the future. Furthermore, he must understand current system
designs sufficiently. The programmer will then be able to
analyze and evaluate existing designs as he creates the future
designs which will better manage the security problem.

Here we first describe related work (§II) before discussing
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Fig. 1. Bloom’s educational objectives; the original objectives appear on the
left, and Anderson et al.’s revision appears on the right; we use Anderson’s
names here

some of the shortcomings present in computer science edu-
cation as it applies to security (§III). We next apply Bloom’s
taxonomy of educational objectives [7, 3] to computer security
education (§IV) in a different way than previous work, and we
use our taxonomy to analyze student performance at a major
computer security competition (§V). Finally, we extrapolate
some key experiences necessary for a rigorous study of com-
puter security (§VI). Here we argue that many components of
security are necessary for general correctness, and thus these
components ought to permeate an entire computer science
curriculum.

II. RELATED WORK

Bloom et al. first published a taxonomy of educational
objectives in 1956 which divided the functions of thought into
six categories [7]. We depict Bloom’s educational objectives
in the left side of Figure 1. Anderson et al. revised Bloom’s
work in 2001 [3], and we depict this revision in the right side
of Figure 1. This paper makes use of Anderson’s revision.

Other work applies Bloom’s objectives to both computer-
science and computer-security education. Johnson et al. stud-
ied how computer-science program assessors and instructors
characterized various evaluation events encountered by first-
year computer-science students [18]. The authors found that
assessors categorized evaluation events mainly at meeting
Bloom’s objectives remember–apply. While the instructors cat-
egorized more events as demonstrations of analysis, they too
agreed that the most commonly met objective was application.
Following this study, the authors propose a new objective—
higher application—which represents application, but only if
informed by analysis, evaluation, and creation.

A project at Pacific Northwest National Laboratory devel-
oped a series of computer-security awareness training materi-
als, and they posited that their training exercises Bloom’s first
three objectives: remember–apply [25].

Van Niekerk et al. applied Bloom’s objectives to the security
training and education of end users. [21]. In this work the
authors posit that organizational end users must understand
why information security policies are necessary if they are to
restrain themselves to act within those policies. Further, the
author presented a number of sample questions and exercises
that would evaluate which of Bloom’s objective are met by a
student’s understanding of information security.

Buchanan et al. characterized their interactive cyber-security
training products vis-à-vis Bloom’s objectives [10]. Their
training modules instruct students on the use of tools such
as nmap, the de facto correspondence between transport-layer
ports and services, and how to manage the robust composition
and operation of existing network products.

III. SHORTCOMINGS IN COMPUTER SECURITY EDUCATION

What is limiting in the studies described above is that each
focuses on end users. For example, van Niekerk states that
if only users understood why passwords were important, then
they would choose and protect them with more care. However,
this is an example of trying to overcome the inadequacies of
system design by training end users. Such a reaction ignores
that passwords alone are a weak form of authentication which
many researchers claim ought to have a very limited place in
modern systems [8].

We consider here the security education of computer sci-
entists, as opposed to end users. It is well known that even
trained users routinely ignore security-related prompts which
often get in the way of their work [16]. Instead, we address
the larger role that the design and implementation of computer
systems has on their eventual use, and how to better educate
computer scientists so that they can to achieve these designs
and implementations.

To illustrate why computer science education is currently
insufficient, let us first consider the end user who is the subject
of PNNL, van Neikerk, and Buchanan’s studies. Often, such
a user receives the blame for security breaches because he
did not choose a strong password, because he executed a
malicious program attached to an email, because he trans-
mitted information over an unauthenticated and unencrypted
network connection, or because he mistakenly trusted one
website which poses as another after clicking on a link in an
email. Indeed many training materials warn users about each
of these actions; for example the US Department of Defense
(DoD) Cyber Awareness Challenge Training teaches students
that passwords ought to be composed of 15 characters—one
lower-case, one upper-case, one number, and one punctuation
mark—but that they should not be written down (does anyone
think this is a viable system?). The same training warns users
against placing unknown CD media in their computer (why
does potentially malicious code have access to information
that could cause harm?), and it urges them not to trust links
in emails (why is the source of information being presented to
the user not always clear?). In the economy of individual end
users—who consider the benefit of following security policies
as disproportional to their cost—ignoring these requirements
is rational.

Security researcher Dan Bernstein stated:
My views of security have become increasingly
ruthless over the years. I see a huge amount of
money and effort being invested in security, and
I have become convinced that most of this money
and effort is being wasted. Most “security” efforts
are designed to stop yesterday’s attacks but fail



completely to stop tomorrow’s attacks and are of no
use in building invulnerable software. These efforts
are a distraction from work that does have long-term
value [4].

Managers, programmers, and administrators who blame end
users or systems whose security depends on end user education
will always fail. Instead, computer scientists ought to design
their systems to use authentication techniques which are
stronger and more convenient than passwords, to appropriately
constrains untrusted programs, to forbid unauthenticated or
unencrypted network connections, to ensure that the source
of information presented to a user is always evident, and
so on. Furthermore, architects should design systems that
provide these properties across all programs, no matter how
the individual programs themselves are written.

Why then, does the education of our programmers and
system administrators fail to produce in sufficient numbers
professionals who are able to construct systems that survive
contact with the Internet? Why are systems so frail that they
require end users to often work in counter-productive ways
and deal with unnatural interfaces in order to maintain an
organization’s security requirements? We posit that an insuf-
ficient number of programmers achieve the higher-orders of
Bloom’s educational objectives vis-à-vis security (and general
system design and implementation), and thus we lack enough
programmers and system administrators who can sufficiently
reason about the systems they design and produce. This is
compounded by the fact that modern Operating Systems (OSs)
are unnecessarily complex and leave too much security func-
tionality to each application;1 this too is a design flaw which
results from insufficient analysis and evaluation. Together,
these factors impede our ability to construct systems which
are both innovative and robust at the pace expected by the
information age.

What is it then that practitioners ought to know? Figure 2
describes these components. Robust programming requires
the protection of confidentiality, integrity, and availability.
Such protections result from the composition of a number
of security services, such as authentication and authorization.
This composition in turn is guided by a number of princi-
ples, including domain separation, least privilege, verifiable
construction, tamper-proof access controls, natural interfaces,
and complete mediation. These principles can be traced back
to the principles of Multics [12] and early work by Rushby
[30].

IV. BLOOM’S TAXONOMY

From an educational standpoint, security failures are due to
practitioners attempting to manage the security problem at the
less-sophisticated levels of Bloom’s hierarchy. A number of
commonly-applied techniques demonstrate this flaw: firewalls
ignore that transport-layer ports have at best a de facto rela-
tionship with services (and that furthermore protocols such as
HTTP can represent any number of services); antivirus scans

1Work to better understand this includes the Ethos project [26, 28, 27]
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Fig. 2. Requirements of robust design; robustness requires the protection
of confidentiality, integrity, and availability; a number of services—such as
authentication and authorization—support these goals, and principles such as
domain separation and least privilege guide good designs

have difficulty catching anything other than known threats; and
keeping software up to date does not remove undiscovered
flaws, which leaves systems vulnerable to unknown attacks.
Heartbleed and Shellshock also represent naive designs. The
harm from the former was compounded because applications
were not broken into mutually untrusting, isolated components
(i.e., only a small process ought to have access to secret
encryption keys). The latter caused harm due to the unwise
decision to build servers from sophisticated software2 designed
for interactive-command-line use.

Table I describes one progression through Bloom’s objec-
tives as a student learns about the security services listed in
Figure 2. It is worth noting that the table is not exhaustive;
instead it provides samples which represent the level of knowl-
edge to which educational experiences must bring students
should they be prepared to craft robust software.

V. CASE STUDY: ANALYZE A SECURITY EXERCISE

The Cyber Security Awareness Week (CSAW) Conference,
hosted annually by the New York University Polytechnic
School of Engineering, includes a Capture The Flag (CTF)
competition specifically targeted at the entry/undergraduate
level. The CSAW CTF is a Jeopardy-style competition in
which teams race to complete security challenges in multiple
categories which vary in difficulty and point value. CSAW’s

2The bash shell uses 99,000 lines of C code.



TABLE I
SAMPLE LEARNING OBJECTIVES FOR THE REQUIREMENTS OF SECURE DESIGN

Authentication (Confidentiality, integrity, and availability)
Remember Describe authentication as the process of identifying principles so they can be subject to subsequent access controls
Understand Give examples of knowledge, possession, and inherence factors used of authentication
Apply Implement a computer program that makes use of authentication
Analyze Contrast the advantages of different authentication factors when used for local and network authentication
Evaluate Explain why so many computer programs fail to properly authenticate the principle upon whose behalf they run
Create Design a trusted computing base that ensures all untrusted programs run with the privileges appropriate for their principle

Authorization (Confidentiality, integrity, and availability)
Remember Describe authorization as the process of restricting computer programs so that they perform only permitted operations on permitted

objects
Understand Distinguish the difference between discretionary and mandatory access controls
Apply Implement a program which constrains users through the use of access controls
Analyze Contrast different means of access controls, for example, flow controls, type enforcement, and capabilities
Evaluate Argue the merit of system-wide access controls when compared to application-specific access controls
Create Design a series of operations, objects, and access controls which achieve complete mediation

Isolation/Encryption (Confidentiality and integrity)
Remember Define isolation as a means of constraining access to a resource
Understand Understand that information has an appropriate scope and that isolation can enforce its scope
Apply Use existing isolation mechanisms such as processes and encryption to produce a program which constrains access to a critical resource
Analyze Categorize different techniques for achieving isolation
Evaluate Defend the value of mandatory encryption and isolation
Create Create a series of system interfaces which dictate the construction of applications as isolated components

Algorithms (Availability)
Remember An algorithm has a theoretical performance which can be described in terms of asymptotic notation
Understand Explain the performance difference between different asymptotic bounds
Apply Choose an appropriately performing algorithm for some performance metric
Analyze Compare the theoretical throughput of a network link/protocol to the resource consumption required by the algorithms and data

structures employed by a service
Evaluate Appraise the merits of different algorithm and data structure choices vis-à-vis theoretical throughput
Create Produce a service implementation which is reasonably robust against Denial of Service (DoS) attacks

Input Recognition (Integrity)
Remember Recognize the need for input validation
Understand Describe how a lack of input validation gives rise to security vulnerabilities
Apply Discover an input validation failure in a computer program
Analyze Relate the input validation problem to parsing
Evaluate Explain the need for formal-grammar definitions of program inputs and outputs, that is that the context-free equivalence problem is

undecidable
Create Define a formal I/O grammar and use a parser generator to create the input validation routines for a computer program

Type Safety (Integrity)
Remember Describe type safety as constraining the operations permitted to act on a region of memory
Understand Describe why attacks such as stack-smashing attacks and defects such as integer overflow demonstrate a lack of type safety
Apply Show that using a verified type-safe language is easier than avoiding buffer-overflow bugs as you implement a set of programs
Analyze Identify the relationship between type safety and input recognition
Evaluate Appraise the merit of various techniques to achieve type safety and tie type safety to input recognition
Create Create a series of system interfaces which bridge the semantic gap between individual-program type systems and system-level code

Counter-DoS (Availability)
Remember Describe DoS countermeasures such as puzzles
Understand Explain how amplification attacks arise from protocol misdesign
Apply Employ puzzles to raise the cost of performing a denial of service attack on a network protocol
Analyze Catagorize a number of protocols with respect to amplification-attack vulnerability
Evaluate Design a new protocol whose availability can be disrupted only by an attacker who performs an excessive amount of work
Create Implement a DoS-resilient system, and perform empirical experiments to test its resiliency

Resilient Ciphers (Confidentiality)
Remember Recognize that implementation artifacts—such as the varying effect of caching on performance—can leak information about

cryptographic keys
Understand Describe why table-based cipher implementations often succumb to side-channel and other attacks
Apply Show a side-channel attack on an existing cipher
Analyze Breakdown a number of cryptographic protocols to thier primitive components
Evaluate Compare the merits of a number of ciphers
Create Implement a system which makes proper use of ciphers and other cryptographic primitives



categories this year included: exploitation, forensics, web, re-
connaissance, networking, cryptography, reverse engineering,
and trivia. Unlike the namesake game show, the competitors
submit solutions (known as flags) confidentially. This scoring
model allows all teams to solve a challenge independently
and still earn points, and this maximizes participation and the
educational value of the competition.

According to the CSAW website [24], the qualifying round
for 2014’s competition (which occurred in September) in-
cluded 998 teams from around the world. 471 of these
teams included undergraduate members with the remainder
composed of graduate students, industry professionals, high
school students, and others with no declared affiliation. During
the qualifying round there were no restrictions on team size or
composition and while no count of team size was released, the
CTF site was accessed by 18,713 unique IPs, which yields a
rough estimate of total participation. The precise educational
background of individual participants is unknown, but this
information is not vital to our analysis since we can still draw
meaningful conclusions about the overall state of computer
security education from the aggregates. This contest format
consequently serves as an excellent dataset to evaluate using
our proposed security education model.

The results of this year’s qualification round are publicly
available through the statistics page of the CSAW CTF website
[24]. Additionally, the website includes solution write-ups for
each challenge, produced by participants who completed them
successfully. In our analysis, we used the challenge descrip-
tions and their associated write-ups to qualitatively map each
challenge to our Bloom’s Taxonomy-based learning objectives
from Table I. The Reconnaissance and Trivia categories were
excluded from our analysis since they typically had weak or
no correlation to computer science learning objectives.

As an example, Forensics Challenge 28 “Fluffy No More”,
required each team to analyze the logs and a database backup
of a web forum to figure out how the site itself was com-
promised and how the attacker then exploited the systems of
visiting users. Analyzing the logs revealed that the attacker
conducted a brute force fuzzing attack against the web server
to search for vulnerable plugins. From this point, the attack
used the vulnerability to compromise the server by uploading
a JavaScript file which used a PDF exploit as an attack vector
against site users. The JavaScript code and PDF embed were
both obfuscated and the PDF itself included an obfuscated
version of the challenge flag.

This challenge scenario required participants to compose
the solution through multiple level two and three learning
objectives. The primary exploit used was an input validation
failure which exposed system credentials to the attacker that
were not properly isolated. A thorough understanding of Linux
authentication and authorization mechanisms was necessary to
understand how the attacker gained control of the full system
after the initial compromise. This same interplay of learning
objectives was at work in the PDF exploit that the attacker
turned against the site users. Finally, a significant red herring
left by the attacker was the encrypted password in the shadow

file. A participant might have assumed the password to be a
key value that needed to be cracked, but a quick analysis of
system settings and knowledge of the strength of SHA-512
would prevent a participant from wasting time on this account
credential.

After completing this qualitative analysis, we then compared
the taxonomy levels associated with each challenge to the
completion rates posted on the CSAW CTF website. The rates
were derived from aggregate results including the performance
of graduate and industry professional teams. This is not con-
sidered a problem since it only serves to make our observations
at worse err on the conservative side. Our results are depicted
in Table II. The numeric values in the table directly correspond
to the Bloom’s Taxonomy levels from Figure 1. The horizontal
dividing lines represent the normal distribution of challenge
completion rates and mark the median and standard deviation
boundaries. The table includes the official CSAW Challenge
IDs to allow others to perform further analysis.

The vast majority of challenges met objectives correspond-
ing to levels 1–3 (remember–apply) in one or more categories.
Additionally, the challenges with the lowest completion rates
(-1 to -2σ) typically involved multiple learning objects at levels
3–4 (apply–analyze). The table also draws attention to the
limited presence of challenges directly involving the important
categories of Authentication, Authorization, and Counter-DoS
as well as the complete absence of challenges mapping to
level 5–6 (evaluate–create) in any category. These observations
should not be taken as a criticism of CSAW, especially since
this event is targeted at entry level students and since our
analysis to this point has only looked at one instance of the
competition. The results simply draw attention to the fact
that a CTF on its own would not serve well as a capstone
experience in a security education program for computer
scientists. The results also show that the community at large—
including graduate students and industry professionals—often
still struggles with level 3 and 4 objectives. We posit that
the solution to this struggle will come through adequately
addressing level 5 and 6 objects in the educational system.

VI. NECESSARY EDUCATIONAL EXPERIENCES

Whether security should permeate an entire computer sci-
ence curriculum is somewhat controversial, with some oppo-
nents arguing for a new computer security major3. We argue
that a distinct major would fail to prepare students to manage
the security problem, because the solutions we need will come
from the application of computer science. If our designs are
insufficient, and it is not possible to fix the security of a system
without a redesign, then a reliance on teaching practitioners
how to implement, configure and manage current designs is
irresponsible and doomed to fail.

We must educate those who will see further than us. Instead
of forming a distinct major, portions of a computer security ed-
ucation ought to permeate through an entire computer science

3A number of universities provide a Cybersecurity or Information Assur-
ance major, the US Naval Academy provides a Cyber Operations major, and
the US Military Academy is likely to consider a similar major.



TABLE II
CORRELATION BETWEEN CHALLENGE COMPLETION RATES AND

TAXONOMIC LEARNING OBJECTIVES
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22 Exploitation 87.1% 0 0 2 0 0 0 0 0
2 Forensics 74.0% 0 0 2 0 2 0 0 0

12 Networking 64.6% 0 0 2 0 2 0 0 0
1 Forensics 64.1% 0 0 1 0 2 0 0 0
3 Forensics 63.6% 0 0 1 0 3 1 0 0

33 Reversing 53.0% 0 0 0 0 2 0 0 0
7 Exploitation 44.4% 0 1 2 0 1 0 0 0
6 Reversing 43.7% 0 0 2 0 0 0 0 0
8 Cryptography 22.0% 1 0 3 3 0 0 0 3

24 Exploitation 17.9% 0 0 2 0 3 3 0 0
21 Web 16.6% 0 0 2 0 3 0 0 0
28 Forensics 14.9% 3 3 3 0 3 0 0 2
27 Reversing 10.2% 0 0 0 0 3 2 0 0
30 Reversing 9.2% 0 0 2 3 3 0 0 0
10 Exploitation 7.2% 0 0 3 0 0 0 0 0
25 Exploitation 6.1% 0 0 0 0 3 4 0 0

9 Cryptography 5.8% 0 0 3 3 0 0 0 3
32 Exploitation 4.0% 0 0 3 0 3 3 0 0
23 Exploitation 4.0% 0 0 3 0 3 4 0 0
31 Cryptography 2.4% 0 0 3 3 0 0 3 4

TABLE III
ESSENTIAL CS-CORE AND SECURITY EDUCATIONAL EXPERIENCES

Experience CS Core Security
Domain Separation X
Least privilege X
Verifiability X
Tamperproof design X
Natural interfaces X
Complete mediation X
Machine architecture X
Language theory X
Compiler construction X
Cryptology X
Algorithms X
Operating system access controls X
Operating system design X
Secure programming practices X

program, while others should be left to a specialized thread
through the program which students might choose to pursue.
Table III captures whether educational experiences belong in
the computer science core or security thread.

Guiding design principles: Table I does not directly address
the guiding design principles we listed in Figure 2. Instead,
these principles are what ought to permeate the educational
experiences which all computer science students encounter.
This is because these principles are equally relevant in the
pursuit of correctness and security. Without the mastery of
these principles, a practitioner will inevitably create programs
that he does not understand, and these programs will neither
be correct nor secure.

For example, computer programs ought to remain as small

as possible (while preserving their intended function) in order
to permit their verification (if a sound design could be found,
then the verification of its implementation would guarantee
robustness). Ken Thompson famously said, “One of my most
productive days was throwing away 1,000 lines of code.”
Dijkstra put it another way: “software managers measure ‘pro-
grammer productivity’ in terms of ‘lines of code produced,’
whereas the notion of ‘lines of code spent’ is much more
appropriate [14].” A student’s natural inclination might be
that large code counts constitute impressive programs, but
they should be taught that elegance and simplicity are more
virtuous. Such an understanding benefits both correctness and
security.

But how can students arrive at designs which result in
small implementations? Much of the requirements here are
shared with general software engineering. UNIX provides a
time-tested example of how to compose large programs from
manageable units [29]. Even traditionally security-related top-
ics such as domain separation have broad merit. For example,
the Biba access-control model [6] is equally useful whether
low-integrity data is the result of malicious attacks, honest
mistakes, or timeliness requirements.

Least privilege is a deceptively complex guiding principle,
but one that is necessary for both reliability and security.
Bernstein describes why least privilege is often necessary but
not universally sufficient for robustness [4, §5.2–5.3]. The
problem arises because the least privilege necessary to perform
some unit of work might already be enough to violate security.
Thus a programmer needs to be able to reason about this and
reinforce least privilege with other techniques when required
(e.g., Bernstein’s multi-source transformations require special
care). Despite the effort required to achieve the background
necessary to perform this analysis, it is a critical skill for
the general computer-science population. It is well known
that least privilege aids general system reliability; for example
microkernels place an emphasis on constraining portions of an
OS in user-space processes to avoid system-wide faults [33].

Natural interfaces do not frustrate users, but security is
wrought with unnatural interfaces. Perhaps the call to isolate
computer security studies in a distinct major arises from the
false assumption that it has to be the case that security implies
unnatural interfaces. In fact, it is our primitive understanding
of computer security that gives rise to unnatural interfaces and
other counterproductive burdens on end users. Better security
design will result in more natural interfaces. Clearly, interface
design is a principle which benefits both security and other
subfields of computer science.

Perhaps the most elusive guiding principle is complete
mediation. Complete mediation refers to a system’s ability to
restrict all system object accesses in accordance with some
tamper-proof security policy. System designs must achieve
complete mediation while permitting efficacious policies that
can be understood by policy engineers. This is difficult, as
success follows only the ideal intersection of each of the
security services. A persistent question is: what level of
abstraction should system objects assume to provide both



generality and simple policy rules?
Few systems sufficiently approach complete mediation, and

those that do serve a rather specific purpose. Only by meeting
the highest levels of Bloom’s educational objectives, will
we produce practitioners who are better able to imagine the
designs necessary to better approach complete mediation.

On its surface, complete mediation appears to be a security-
specific goal, as it seems to imply OS access controls. How-
ever, its essence is shared with fundamental principles of
reliability, namely enforcing abstractions. Consider language
keywords such as Java’s public and private. The purpose of these
constructs is to promote well-defined interfaces and to restrict
access that would otherwise violate the resulting abstractions.

Critical subjects: Beyond mastering generally-applicable
guiding principles, a computer security thread within a com-
puter science program must further educate students on a
number of critical subjects. Many of the topics we list here
also benefit general computer science students.

It is important for computer scientists to understand the
semantics of the interfaces upon which they construct their
software. This includes understanding hardware, and thus
a computer security thread must provide experiences in
assembly-level programming. Events such as the CSAW CTF
competition serve to provide experiences corresponding to
the middle levels of Bloom’s hierarchy. However, students
must be able to characterize general solutions to the defects
they exploit during the course of competing in a CTF event.
Put another way, learning some processor’s instruction set is
necessary but not sufficient—after all, instruction sets eventu-
ally become obsolete. More importantly, students should draw
general conclusions about how to best manage the limitations
of hardware, for example by enforcing various forms of type
safety at the programming-language level.

Language theoretic security posits that programmers must
define the protocols which their programs make use of
using formal grammars. They should then machine-derive
recognizers—such as by using YACC, PADS, or hammer
[15, 1]—if they are to make their programs trustworthy
[31]. This is because the context-free equivalence problem—
essentially the ability determine if two context-free grammars
describe the same language—is undecidable.

A sufficient computer security education thus requires
undergraduate-level language-theory and compiler courses.
Practitioners must understand Chomsky’s hierarchy of lan-
guages [11]. Without this knowledge, programmers will con-
struct defective software. For example, programmers might
process HTML using regular expressions or worse [32]. Fur-
thermore, without a strong understanding of how to define
formal grammars—along with how to derive lexical analyzers
and parsers from a formal grammar—their programs will
inevitably misinterpret the inputs they receive.

A study of cryptology—to include both cryptography and
cryptanalysis—is necessary to satisfy the resilient ciphers
security service, as well as the encryption portion of the
isolation service. This is an example of a set of skills which is
less relevant to general computer scientists. However, general

programmers will benefit from the better security interfaces
that this education will permit.

The purpose of studying cryptology here is not to design
ciphers or even to choose the details of cipher use (we follow
the authors of NaCl [5] who posit that a cryptographic library
designed by cryptographers ought to choose the cipher suite
programs will use). Rather, security programmers need to
understand the purpose of the various cryptographic primitives
(e.g., hashing, authenticated encryption, etc.). Able to make
proper use of cryptographic primitives, security programmers
should—in the spirit of NaCl—produce designs which make
security decisions for programmers, in those places where the
decisions do not unnecessarily impede generality. The result
is a simpler system, a more clearly defined trusted component,
and better-informed, more-consistent access controls.

A design’s resilience against DoS attacks and thus the
design’s ability to protect availability is a function of
the algorithms employed by the design. Particular DoS
countermeasures—such as puzzles [19]—also require com-
plexity analysis. Thus an algorithms course must be included
in a computer security education.

Traditional security services such as isolation, authentica-
tion, and authorization should be taught in the context of a
basic OS course for the general computer-science population.
However, students with a security focus need more. It is
very likely that many of the requirements of robust design
will require modifications to OS kernels. This is because the
OS kernel (or perhaps a hypervisor) is in a unique position
vis-à-vis complete mediation—covert channels aside, all of
a program’s interaction outside of its address space must
pass through the OS. For this reason, students of security
should experience an advanced operating system course which
goes beyond what generally is taught at the undergraduate
level. Topics should include surveying existing OS system
call interfaces and designing system call interfaces which will
better aid programmers as they construct robust software.
Along with an advanced OS course, a computer security
curriculum should provide a course on secure programming
practices.

VII. CONCLUSION

This paper focused on the education of computer
scientists—the future designers and programmers who will in-
herit the security problems we face. It is clear that our current
software base is failing to provide the confidentiality, integrity,
and availability protections required. This security problem
cannot be solved through composition and management alone.
Further, it is evident that design will dominate implementation
when considering solutions.

What should be clear—based on the necessity for topics
such as algorithms, compilers, language theory, robust pro-
gramming practices, and operating systems—is that the secu-
rity problem is one that demands trained computer scientists.
Creating a distinct degree path will inevitably miss providing
students with key insights. Focusing on how to configure or fix



implementation errors in present systems—which have been
demonstrated to be insufficient by design—is irresponsible.

Future work ought to describe the educational experiences
required in preparation for other career paths, such as system
administration and project management. Of particular interest
is how to reconcile the insufficiency of present system designs
with the applied focus of the manners of computing education
outside of computer science. Yet another area which requires
thought is what, if anything, should be taught to the general
population of students at the undergraduate level. We have
not yet considered this to a high degree, but it seems that here
the traditional tradesman-style approach of security awareness
instruction and training is not a good fit.

We require computer scientists with the education necessary
to produce a new generation of designs which are robust
enough to survive contact with the Internet. Thus it is nec-
essary to rethink computer science education to provide the
experiences which support the higher-order Bloom’s objectives
needed for this task. While not all students will migrate
towards focusing on robust design and implementations dur-
ing their studies, all computer science students will benefit
from studying the components of computer security which
are shared with general correctness. This paper proposed a
baseline of guiding design principles known to all computer
scientists, along with an optional computer security thread
which would result in a deeper understanding of a number
of key security services.
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