
Improving Application Security Through
TLS-Library Redesign

Leo St. Amour1 and W. Michael Petullo2

1 Northeastern University
Boston, Massachusetts 02115, USA
2 United States Military Academy
West Point, New York 10996, USA

Abstract. Research has revealed a number of pitfalls inherent in con-
temporary TLS libraries. Common mistakes when programming using
their APIs include insufficient certificate verification and the use of weak
cipher suites. These programmer errors leave applications susceptible to
man-in-the-middle attacks. Furthermore, current TLS libraries encour-
age system designs which leave the confidentiality of secret authenti-
cation and session keys vulnerable to application flaws. This paper in-
troduces libtlssep (pronounced lib·tē·el·sep), a new, open-source TLS
library which provides a simpler API and improved security architec-
ture. Applications that use libtlssep spawn a separate process whose
role is to provide one or more TLS-protected communication channels;
this child process assures proper certificate verification and isolates au-
thentication and session keys in its separate memory space. We present
a security, programmability, and performance analysis of libtlssep.

1 Introduction

Programs increasingly use Transport Layer Security (TLS) to protect com-
munications. While TLS has long protected commerce and banking transactions,
the protocol now routinely protects less sensitive services such as search and
video streaming due to privacy concerns [23]. Researchers have even begun to
investigate the notion of ubiquitous encryption [9, 14, 26]. TLS uses authentica-
tion and encryption to protect the confidentiality and integrity of communication
channels, and its authentication makes use of asymmetric-key cryptography.

TLS provides server authentication through the use of X.509 identity certifi-
cates. In the most common model, some trusted Certificate Authority (CA) signs
each identity certificate, ostensibly binding the public key present in the certifi-
cate to a hostname. Systems often rely on password-based client authentication
which takes place after a TLS session initializes. However, TLS also supports
client-side X.509-based authentication.

Public domain.
Permanent ID of this document: d3b9b46f59ee6212d7721c54cacb3422.
Date: July 9, 2015.

II

Yet attackers occasionally violate the confidentiality and integrity of com-
munication channels despite the use of TLS. Studies by Vratonjic et al. [32],
Georgiev et al. [15], and Fahl et al. [12] found that programmers consistently
misuse TLS libraries in their applications. Such errors include:

(1) missing name verification,3

(2) trust of self-signed certificates,
(3) improper error handling,
(4) poor cipher-suite choices, and
(5) missing certificate revocation checks.

These vulnerabilities seem to arise from the Application Programming Interfaces
(APIs) exported by contemporary TLS libraries. It seems that existing APIs
leave too many responsibilities to the application programmer; the deceptive
complexity of these steps overwhelm even those application programmers who
do remember to attempt their implementation (over and over again, as they
write each application). For example, Marlinspike showed how the different string
encodings in X.509 and C give rise to a subtle attack on name verification [22].

Architectural choices also threaten TLS. In many cases, compromised control
flow or ill information flow within an application can result in the compromise
of a private cryptographic key. This is because many applications keep TLS
processing and general logic in the same address space. While Heartbleed [24]
attacked OpenSSL itself to compromise cryptographic keys, there are likely many
more vulnerabilities present in application logic than there are present in the
code included from TLS libraries. This is especially dangerous because systems
often share TLS keys across several applications. For example, we counted 26
subject-alternative names plus a number of wildcards within the certificate which
authenticates bing.com at the time of writing.

In this paper, we introduce libtlssep (pronounced lib·tē·el·sep), a TLS
library that both simplifies the TLS API and utilizes privilege separation to
increase communication security. By using libtlssep, an application forks a
child process which is responsible for the application’s TLS operations. Keeping
private keys isolated in the child’s separate memory space makes it more dif-
ficult for an application bug to result in a compromised key. We have released
a research prototype of libtlssep under an open-source license, and we have
made this prototype and its documentation available at http://www.flyn.org/

projects/libtlssep.
In the following sections, we describe related work; summarize our threat

model; present the design of libtlssep; and present security, programmability,
and performance results.

2 Related work

Our survey of related work focuses on (1) pitfalls resulting from the APIs pro-
vided by existing TLS libraries, (2) efforts to improve TLS APIs, (3) existing

3 In this paper, we refer to verifying a name by which we mean verifying either a certifi-
cate’s subject-common name or its subject-alternative name. Such names generally
represent either a host or a user.

III

uses of privilege separation and similar architectures, and (4) systems which
provide stronger or more universal cryptographic-key isolation than libtlssep,
albeit not without tradeoffs.

2.1 API pitfalls

Many researchers have studied the efficacy of TLS in practice [32, 15, 12]. From
their work, we better understand a number of pitfalls which arise when using
contemporary TLS libraries. Fahl et al. also provide evidence that the Internet
is ripe with poor advice which results in programmers wrongly employing TLS
libraries [13, §4.1]. We summarized the pitfalls of contemporary APIs in §1, and
here we further describe this previous work.

A connection procedure which returns a TLS connection handle without first
verifying the certificates involved seems to encourage omitting name verification,
yet many contemporary APIs follow this pattern. Figure 1 shows in pseudo-code
an example of an OpenSSL-based client. Note that a programmer could mistak-
enly begin calling SSL_write and SSL_read without first calling and checking
the result of SSL_get_verify_result and verify_name. OpenSSL also provides
a callback-type verification mechanism, but this similarly requires explicit use.

Marlinspike provided one example of why the design of X.509 makes imple-
menting even verify_name difficult. Should any CA issue a certificate which con-
tains an embedded NULL byte—such as www.victim.com\0.attacker.com—
then it is possible that attacker.com could fraudulently assume the identity of
victim.com. All that is necessary is for an application programmer to forget
that NULL bytes are valid within X.509 strings but terminate C strings, such
as by näıvely writing the application to use strcmp to compare the two as C
strings. Fixed applications each duplicate strange but necessary checks such as
the one found in wget [30]:

if (strlen (common_name) != (size_t) ASN1_STRING_length (sdata)) {

/* Fail. */

}

Figure 2 shows in pseudo-code an example of an OpenSSL-based server.
The program assumes that the client authenticates using a certificate. This re-
quires more work from the application programmer: he would have to modify
the client’s logic to supply client-side certificates.

Researchers have found deployed applications which verify certificates yet
trust self-signed certificates. Trusting self-signed certificates is rarely desirable
except during the implementation and testing phases of development. In any
case, these mistakes seem to arise from either ignorance of the dangers involved
or programmers forgetting to deactivate the trust of self-signed certificates in
their programs before deploying them. It is common in TLS libraries to rely
on control-flow statements written by the application programmer to determine
whether to honor self-signed certificates.

Additional dangers arise when the CA model itself breaks down; Durumeric
et al. performed an extensive study of CA use in practice [11]. Research shows
evidence that it is unreasonable for all Internet users to trust the same set of

IV

1 sock = create_socket(host) // Create BSD socket.

2 method = TLSv1_2_client_method ()

3 ctx = SSL_CTX_new(method)

4 SSL_CTX_set_default_verify_paths(ctx)

5 ssl = SSL_new(ctx)

6 SSL_set_fd(ssl , sock)

7 SSL_connect(ssl)

8 cert = SSL_get_peer_certificate(ssl)

9 // Programmer must explicitly check certificate:

10 if cert != NULL

11 && X509_V_OK == SSL_get_verify_result(ssl)

12 && verify_name(cert , host) { // Cert. name == host?

13 SSL_write(ssl ,request ,len)

14 SSL_read(ssl , response , len)

15 handle(response)

16 }

17 SSL_shutdown(ssl)

18 SSL_free(ssl)

19 close(sock)

Fig. 1: Pseudocode to create a TLS connection using OpenSSL. Omits error
handling, except for errors related to verification. The user-defined procedures
are create socket, verify name, and handle. Beurdouche et al. provide a series
of similar examples [7, Listing 1–3].

CAs [31, 21]. As CAs operate in the context of many juristictions and loyalties,
an individual is likely not well served by trusting all of them. Furthermore, CAs
themselves have been the target of successful attacks [19]. Alternative models
include PGP’s web-of-trust model [34], DANE [18, 2], and certificate pinning,
which closely resembles the model found in SSH [33]. Yet inspecting Figure 1
shows that programs which directly use OpenSSL each bear the responsibility
of implementing verification logic from within their source code. This makes
adopting emerging trust models across all applications cumbersome.

A certificate signatory ought to revoke certificates which are compromised
or otherwise invalid, and part of the verification process should involve checking
the revocation status of a certificate. However, existing TLS APIs permit the
omission of these checks, and research has found such misuse in production
applications [12, 15].

2.2 Improved APIs and static analysis

LibreSSL [4] aims to fix implementation errors in OpenSSL, and it also provides
libtls. Libtls exports a simplified API; for example, it takes the approach
of including certificate verification in the semantics of its tls_connect proce-
dure, although a programmer can disable this name verification using a proce-
dure named tls_config_insecure_noverifyname. Another library, s2n [29],
has similar goals.4

4 Amazon announced the s2n project during the final revisions of this paper.

V

1 sock = accept_connection () // Accept connection.

2 method = TLSv1_2_server_method ()

3 ctx = SSL_CTX_new(method)

4 SSL_CTX_set_verify(ctx , SSL_VERIFY_PEER |

SSL_VERIFY_FAIL_IF_NO_PEER_CERT , ignore);

5 SSL_CTX_use_certificate_file(ctx , cert , SSL_FILETYPE_PEM)

6 SSL_CTX_use_PrivateKey_file(ctx , key , SSL_FILETYPE_PEM)

7 SSL_CTX_check_private_key(ctx)

8 SSL_CTX_set_default_verify_paths(ctx)

9 ssl = SSL_new(ctx)

10 SSL_set_fd(ssl , sock)

11 SSL_accept(ssl)

12 cert = SSL_get_peer_certificate(ssl)

13 // Programmer must explicitly check certificate:

14 if cert != NULL

15 && X509_V_OK == SSL_get_verify_result(ssl)

16 && verify_user(cert) { // Cert. name permitted user?

17 SSL_read(ssl , request , len)

18 response = handle(request)

19 SSL_write(ssl ,response ,len)

20 }

21 SSL_shutdown(ssl)

22 SSL_free(ssl)

23 close(sock)

Fig. 2: Pseudocode to accept a TLS connection using OpenSSL. Omits error
handling, except for errors related to verification. The user-defined procedures
are accept connection, verify user, and handle.

Fahl et al. modified the Android software stack to employ a certificate-
verification service which separately exists from each individual application [13,
§5.2]. Moving verification to a system-wide service reduces the possibility of a
programmer accidentally circumventing verification, and it also simplifies the
selection and configuration of verification techniques such as certificate pinning.
Programmers can also—without modifying the program—configure the verifi-
cation service to enable a per-application development mode which trusts self-
signed certificates. This architecture also centralizes the management of certifi-
cate warnings.

CertShim uses the LD_PRELOAD facility present in many Operating Systems
(OSs) to assure certificate verification by replacing key TLS library procedures
at runtime [3]. For example, CertShim replaces OpenSSL’s SSL_connnect with
a version which adds certificate verification to its semantics. Applications do
not require modifications to take advantage of CertShim. CertShim supports
a number of verification techniques, and it makes use of a single configuration
point which exists separately from each application’s configuration.

The NaCl library provides two common cryptographic operations: public-
key authenticated encryption and signatures [6]. NaCl pursues very-high per-
formance, side-channel-free cryptography, and the library provides a vastly sim-

VI

pler API than contemporary cryptographic libraries. NaCl in its present form
serves to replace the cryptographic-primitive procedures in TLS libraries, but
it does not yet itself implement a protected network protocol. Work to build
more-robust and higher-performance protocols around NaCl includes CurveCP
[5] and MinimaLT [27], but these bear the cost of incompatibility with TLS.

Efforts such as the Fedora System-Wide Crypto Policy [1] seek to centralize
the configuration of all cryptographic protections. This could simplify some por-
tions of TLS configuration, although it will help less with verification because
of the amount of application-specific verification code. The main beneficiary of
this work will be cipher-suite selection.

SSLint uses static analysis to determine if existing programs properly use
TLS-library APIs [17]. This appears complimentary to libtlssep, as it can
help convince programmers to fix API misuse, possibly opting to migrate to a
library with an improved API. The researchers behind SSLint discovered 27
previously-unknown vulnerabilities in deployed programs.

2.3 Privilege separation

Researchers have produced a number of models which increase security by us-
ing separate processes to isolate components; these designs are often described
as providing privilege separation. The OpenSSH dæmon’s privileged component
can access the host’s private key, open pseudo-terminals, and service change-
of-identity requests [28]. Unprivileged components within OpenSSH then make
indirect use of these capabilities through carefully-defined interfaces, for ex-
ample by receiving pseudo-terminal file descriptors via file-descriptor passing.
OpenBSD provides a framework called imsg [25] which aims to ease the explicit
programming of communication between privileged-separated components.

The Plan 9 operating system provides a process called factotum which ne-
gotiates service authentication on behalf of applications [10]. Factotum isolates
authentication keys as well as the code required for performing authentication in
a separate memory space. Concentrating security code within a single program
increases the programmer’s ability to verify that the code is correctly written,
facilitates executing the code with the least privilege required, and makes it
easier to update security software. Most importantly, a logical flaw in a compli-
cated program cannot directly lead to the compromise of an authentication key
because of privilege separation. Plan 9 does not subsume from applications the
work of verifying certificates.

2.4 Specialized cryptographic key isolation

Other systems provide stronger cryptographic key isolation, albeit with more
intrusive requirements. One example, Mimosa [16], uses the properties of trans-
actional memory to protect cryptographic keys from attacks originating both in
user and kernel space. Yet Mimosa requires modifications to the OS kernel as
well as hardware transactional memory.

Ethos is a novel OS kernel which provides digital-signature and encrypted-
networking system calls [26]. This allows the kernel to universally isolate crypto-
graphic keys from applications, and it also makes the kernel aware of the location

VII

in memory of all cryptographic keys. Ethos is clean-slate and thus requires appli-
cations to be rewritten for all of its unique interfaces, and this burden is greater
than the smaller changes required by merely porting to a new TLS API (this is
a tradeoff between expediency and Ethos’ stronger security properties).

Plan 9 also provides special facilities for isolating authentication keys. The
system will not swap factotum to disk and protects factotum’s entry in the
/proc filesystem. Many versions of Unix support an encrypted swap space for
similar reasons.

3 Threat model

Our threat model includes very powerful Man-in-the-Middle (MitM) attackers
who can capture, modify, and deny the transmission of the messages communi-
cated between two hosts. Specifically, our attacker can respond to the requests
intended for another recipient, generate self-signed certificates, present legiti-
mate certificates for the domains he controls, or capture legitimate certificates
for the domains he does not control. Thus our goal is to use strong, properly-
applied cryptography to provide confidentiality and integrity protections despite
these attacks, namely to (1) blind the attacker to the messages we send and
receive and (2) detect any attacker-manipulated traffic.

Our design removes a number of TLS misuses, and thus reduces the burden
on programmers so that they can focus on the correctness of their program’s core
logic. It is not possible to protect against all programmer errors, yet we expect
that the attacker will try to exploit these errors too. Such errors are orthogonal
to the use of TLS, and thus they are outside of our threat model, except that
we wish to avoid them compromising a cryptographic key.

We also ignore attacks on the host OS, OS access controls, the privileged
account, a virtual machine monitor (if present), and hardware. We assume that
the applications which make use of TLS do not do so with elevated privileges.
Finally, while we are concerned about programmers selecting weak cipher suites,
we ignore attacks on the TLS cryptographic protocol itself. Here there is some
overlap [7], but in any case the techniques we used in libtlssep could likely aid
in crafting libraries to support protected-networking protocols other than TLS.

4 Design of libtlssep

4.1 Libtlssep architecture

We designed our architecture to employ the isolation facilities already present
in mainstream OSs to engender more robust applications. The architecture of
libtlssep follows from the suggestions of Provos et al. [28], as it aims to
aid in crafting applications which make use of privilege separation. Like SSH,
libtlssep uses file-descriptor passing to transmit capabilities (BSD-socket con-
nections in the case of libtlssep) from one process to another.

As with Plan 9’s factotum, libtlssep aims to apply SSH-style privilege
separation to many applications in a convenient way. Factotum is more general
but isolates only authentication secrets; libtlssep spans both authentication

VIII

Server computer

Client computer

Service

ApplicationDecorator

¶ Application obtains
network socket

· Application forwards
network socket to

decorator and closes

¸ Decorator initiates TLS
connection using socket

¹ Subsequent
communication passes

through decorator

º Decorator
encrypts/decrypts
messages between

server and application

Network socket

File descr. socket

Control channel
Notify socket

se
lec

t

writ
e/

re
ad

write/read
select/read

write/read
write

Fig. 3: Our Architecture

and encryption, isolates the session key negotiated between two parties, and
provides a TLS-focused API.

Libtlssep’s use of a separate process also resembles Fahl’s certificate-
verification service, but the latter does not isolate session keys. Libtlssep tar-
gets C on POSIX instead of Java on Android, and while it leaves the particulars
of error presentation to application programmers, an untrusted connection will
result in an error code rather than proceeding.

The libtlssep architecture breaks applications into (at least) two processes:
(1) a process containing authentication and encryption functionality, provided
by libtlssep’s network decorator ; and (2) a process containing program logic,
provided by the application programmer. The decorator itself makes use of
OpenSSL, but could be ported to any existing TLS implementation without re-
quiring further application changes; nonetheless the decorator simplifies the use
of the underlying implementation. Unlike with the direct use of OpenSSL, the
decorator—like LibreSSL’s libtls—assures the verification of certificates and
hides a number of disparate OpenSSL procedure calls behind around a dozen
libtlssep procedures. Figure 3 depicts libtlssep’s architecture.

Libtlssep uses three channels to facilitate communication between an ap-
plication and its decorator: (1) a Unix-domain socket used by the application
to pass file descriptors to its decorator, (2) a shared-memory- and event-file-
descriptor-based control channel which allows the application to make Remote

IX

Procedure Calls (RPCs) to its decorator, and (3) a Unix-domain notification
socket which allows the application to poll for available data. The application
provides yet another file descriptor—the network file descriptor—over which TLS
messages flow between the decorator and remote service.

To use libtlssep, an application first initiates a connection with some ser-
vice using the BSD-socket API. Next, the application calls the tlssep_init

and tlssep_connect (or tlssep_accept) procedures. Tlssep_init executes
the decorator process and initiates the control and file-decriptor-passing chan-
nels with it. Tlssep_connect passes the network socket and a notification
socket to the decorator, and the decorator uses the network socket to initi-
ate a TLS connection with the service. One decorator can support a number
of tlssep_connect calls to different end points; thus two of the communica-
tion channels mentioned are per-run (i.e., the control and file-decriptor-passing
channels) and two are per-TLS-connection (i.e., the network and notification
sockets).

From this point on, the application communicates with the service through
the decorator using libtlssep’s API: the application makes read and write
RPCs across the control channel by calling tlssep_read and tlssep_write

(possibly employing select on the notification socket), and the decorator
wraps/unwraps the contents of these calls using TLS, passing/receiving them
to/from the service.

4.2 Libtlssep API and configuration

API: Libtlssep provides around a dozen procedures which we summarize here.

Most of the procedures take a tlssep_desc_t argument which describes an
established libtlssep connection. The fields within the tlssep_desc_t struc-
ture are meant to be opaque, with the exception of the notification file descriptor
which bears the field name notificationfd.

tlssep_status_t tlssep_init (tlssep_context_t *context)

The tlssep_init procedure initializes a context structure, executes the dec-
orator process, and establishes the control and file-descriptor-passing channels
described in §4.1. Upon execution, the decorator reads its configuration and
begins polling the control socket.

tlssep_status_t tlssep_connect (tlssep_context_t *context,

int file_descriptor,

const char *expected_name,

char *name,

tlssep_desc_t *desc)

The tlssep_connect procedure provides the decorator with a network file
descriptor, expected name, and the per-TLS-connection notification socket de-
scribed in §4.1. After providing this information to the decorator, libtlssep
closes the application-side copy of the network file descriptor; thereafter the ap-
plication can determine if network data is available for tlssep_read by polling
the per-TLS-connection notification socket.

X

Given these parameters, the decorator initiates a TLS connection and adds
the given network file descriptor to the set of file descriptors it polls. Finally, the
decorator verifies the certificate received from the server against expected_name,
aborting the process if the certificate does not satisfy the configured verification
engine. Upon receiving notification of a successful connection, tlssep_connect
initializes the connection descriptor named desc and copies the server’s true
name into the buffer pointed to by name.

tlssep_status_t tlssep_accept (tlssep_context_t *context,

int file_descriptor,

const char *expected_name,

char *name,

tlssep_desc_t *desc)

The tlssep_accept procedure serves the same purpose as tlssep_connect,
except that it implements the server side.

tlssep_status_t tlssep_write (tlssep_desc_t *desc,

const void *buf,

int buf_size,

int *bytes_written)

The tlssep_write procedure provides the decorator with a number of bytes
to write on the given TLS connection.

tlssep_status_t tlssep_read (tlssep_desc_t *desc,

void *buf,

int buf_size,

int *num_read)

The tlssep_read procedure requests from the decorator a number of bytes
to be read from the given TLS connection.

tlssep_status_t tlssep_peek (tlssep_desc_t *desc,

void *buf,

int buf_size,

int *num_read)

The tlssep_peek procedure serves the same purpose as tlssep_read, except
that the returned bytes will remain in the decorator’s buffer and thus remain
available for subsequent reads/peeks.

tlssep_status_t tlssep_poll (tlssep_desc_t *desc,

unsigned int timeout)

The tlssep_poll procedure polls the notification socket associated with
the TLS connection, blocking until the decorator has data for the application.
Alternatively, a programmer can directly use Unix’s select system call since
the desc structure contains the notification socket file descriptor.

tlssep_status_t tlssep_setnonblock (tlssep_desc_t *desc)

XI

The tlssep_setnonblock procedure sets the mode of the decorator’s net-
work file descriptor to non-blocking.

tlssep_status_t tlssep_close (tlssep_desc_t *desc)

The tlssep_close procedure instructs the decorator to close the given TLS
connection and remove its file descriptor from the set of file descriptors it polls.
The procedure also frees any state associated with the connection.

tlssep_status_t tlssep_terminate (tlssep_context_t *context)

The tlssep_terminate procedure instructs the decorator to exit.

char *tlssep_strerror (tlssep_status_t error)

The tlssep_strerror transforms a tlssep_status_t status code into a
human-readable string.

1 sock = create_socket(hostname)

2 tlssep_init(ctx)

3 status = tlssep_connect(ctx , sock , hostname , NULL , desc)

4 if TLSSEP_STATUS_OK == status {

5 tlssep_write(desc , request , len)

6 tlssep_read(desc , response , len)

7 handle(response)

8 tlssep_close(desc)

9 }

10 tlssep_terminate(desc)

Fig. 4: Pseudocode to create a TLS connection using libtlssep. Omits
error handling, other than to check that the server’s certificate satisfies
tlssep connect. The user-defined procedures are create socket and handle.

1 sock = accept_connection ()

2 tlssep_init(ctx)

3 status = tlssep_accept(ctx , sock , NULL , user_name , desc)

4 if TLSSEP_STATUS_OK == status && user_auth(user_name) {

5 tlssep_read(desc , request , len)

6 response = handle(request)

7 tlssep_write(desc , response , len)

8 tlssep_close(desc)

9 }

10 tlssep_terminate(desc)

Fig. 5: Pseudocode to accept a TLS connection using libtlssep. Omits error
handling, other than to check that the client is authorized to connect. The user-
defined procedures are accept connection, user auth, and handle.

XII

Figure 4 shows in pseudo-code an example of a libtlssep-based client, and
Figure 5 shows a server. In a real application, the programmer would check the
status code returned from each libtlssep call; here we show only those checks
required to perform authentication. §5.1 will describe the security advantages of
libtlssep’s API.

Configuration: CertShim provided the inspiration for libtlssep’s config-

uration engine. Figure 6 lists a sample libtlssep configuration as is typically
found at /etc/tlssep-decorator-api -version.cfg, where api -version

represents the major and minor version numbers of libtlssep. Lines 1–3 spec-
ify the global configuration parameters, in this case the path to a certificate and
private key as well as the default certificate-trust model.

The application-specific statement beginning on line 5 overrides the con-
figuration when tlssep-decorator acts on behalf of /usr/bin/my-prototype

so that the program chains two verification techniques: the traditional CA
model and self-signed certificates, with the latter presumably supported for
development purposes. Here the meaning of the enough parameter resembles
CertShim’s vote: satisfying one of either CA or self-signed verification is suf-
ficient for this application.

Had the administrator set enough to 2, the application would require
that both verifications be successful; in the absence of an enough parameter,
tlssep-decorator will enforce all of the specified verification techniques. An
administrator could select other trust models here without making any changes
to application source code.

1 certpath = "/etc/pki/tls/certs/cert.pem";

2 privkeypath = "/etc/pki/tls/certs/key.pem";

3 verification = ("ca");

5 programs = ({

6 path = "/usr/bin/my-prototype ";

7 verification = ("ca", "self -signed");

8 enough = 1;

9 })

Fig. 6: Sample libtlssep configuration.

5 Security, programmability, and performance

5.1 Security benefits of libtlssep’s API and architecture

Table 1 summarizes the security advantages of libtlssep which we further
describe here. Libtlssep contributes to application robustness for two reasons:
(1) it has a simple API which we designed to provide clear failure semantics, and
(2) it results in applications which make use of privilege separation to protect
secret cryptographic keys.

Our design represents a tradeoff: for example, combining another TLS li-
brary with OpenBSD’s imsg would provide more flexibility, but such a composi-

XIII

Table 1: Comparison of OpenSSL and libtlssep.

OpenSSL libtlssep

Certificate
verification

Left to application
programmer; trust model
(including trust of self-signed
certificates) embedded in
application logic

Follows from semantics of
library; trust model selected by
configuration

Name
verification

Application programmer must
check that the certificate’s
name matches the expected
name

Follows from semantics of
library

Error reporting Inconsistent API [15, §4.1] Consistent API

Key isolation Key compromise follows from
application compromise

Architecture isolates keys in
separate memory space

Configuration Each application has its own
configuration mechanism

Single configuration point for
all applications

OS access
controls

OS has difficulty discerning
between encrypted and
cleartext connections

OS can restrict applications
such that they can only
perform network reads and
writes through decorator

Cipher suite
choices

Left to application
programmer; includes null

cipher

Library designers choose cipher
suite

tion requires the programmer to design a privilege-separation architecture. With
libtlssep, programmers benefit from the architecture we designed to protect
cryptographic keys without needing to reason about privilege separation.

Libtlssep’s API promotes better application security. Recall Figures 1, 2, 4,
and 5 which show examples of using OpenSSL and libtlssep. Figure 1 shows
that a client application programmer who makes direct use of OpenSSL must
call a number of procedures to set up the TLS connection. Most significantly,
explicit code is required to verify the peer certificate involved in the connection;
this involves obtaining the peer certificate using SSL_get_peer_certificate,
verifying it through a call to SSL_get_verify_result, and further checking
the certificate’s name by implementing and calling verify_name. We discussed
in §2 Marlinspike’s attack on subtle flaws in verify_name-like procedures, and
contemporary TLS APIs cause such procedures to be repeated across many
applications.

Figure 4 shows that libtlssep requires fewer procedure calls, and thus
allows less ill composition. Here the programmer does not have to explic-

XIV

itly call a verification routine. Instead, verification follows from the seman-
tics of tlssep_connect (or tlssep_accept), as with LibreSSL’s tls_connect.
Libtlssep does not return a valid TLS connection handle if verification fails.
By using libtlssep instead of directly using OpenSSL, an application remains
simpler, because libtlssep absolves the application programmer of the respon-
sibility of verification. Libtlssep also makes error handling more clear as its
procedures report errors in a consistent manner, unlike many existing APIs [15,
§4.1].

With libtlssep, all network messages subsequent to the initial connection
establishment pass through the decorator. The decorator isolates both long-
term authentication keys and session keys in its own address space. This reduces
the likelihood that an application compromise will result in the compromise of
a cryptographic secret. This design is intended to address issues which stem
from a combination of (1) implementation flaws which allow for applications
to be compromised and (2) design flaws which allow long-term keys to exist
in an application’s memory space. We do not claim to fix all attacks, but our
implementation will help with those that exploit application code to retrieve
long-term keys.

In other architectures, both verification code and configuration settings are
duplicated throughout a number of applications. Bugs fixed in one application
are left latent in others, and administrators must learn each application’s TLS-
configuration syntax. With libtlssep, the API and decorator consolidates ver-
ification code, ensures applications cannot ignore verification failures, and con-
solidates trust-model configuration. Programmers are accustomed to deploying
different configuration files than those used while developing their software, so
this will reduce the likelihood of deploying an application which trusts self-signed
certificates. Furthermore, upgrading libtlssep and modifying the library’s con-
figuration file can add new certificate trust models without modifying applica-
tions. This can also centralize efforts to address emerging threats—such as with
the triple-handshake attack [8]—which with other libraries require updates to
each application.

Libtlssep’s decorator will exist in a filesystem with its setuid bit set. This
ensures that the decorator runs as a different user than the application. The
decorator’s user should have special read access to the appropriate cryptographic
keys, but should not necessarily have full superuser privileges.

Libtlssep’s architecture allows OSs to better constrain applications which
make use of the library. For example, Security-Enhanced Linux (SELinux) or an-
other fine-grained access-control system could forbid an application from reading
or writing cleartext network connections, instead permitting only TLS-protected
communication through the libtlssep decorator. This forces applications to
communicate over the network only in an encrypted manner. Current architec-
tures make it difficult to discern between encrypted and cleartext connections
from within OS access controls. Existing techniques rely on weaker transport-
layer-port filtering or attempts at runtime packet inspection.

XV

Our design does not allow programmers to pick the cipher suites their appli-
cations use. This allows libtlssep to avoid cryptographic disasters such as weak
ciphers, disabled cryptography, or ill-composed cryptographic primitives [6].

5.2 Programmability

To assess the programmability of libtlssep, we ported two common applica-
tions: the wget client [30] and the lighttpd [20] server.

Porting wget required the addition of 231 lines of code—31 of which were
comments—and the removal of three lines (wget totals around 39,000 lines). A
number of these additions involved properly implementing error handling and
following good programming practices. We benefited from the fact that wget

already supports multiple TLS backends, so our additions took the form of a
libtlssep backend and modified only two source files. The libtlssep backend
comprises of 159 lines of code while the OpenSSL backend consumes 590.

Porting lighttpd required the addition of 352 lines and the removal of 15
lines (lighttpd totals around 40,000 lines). Lighttpd was not written to support
multiple TLS backends, which slightly added to the difficulty of our port. Here
we ended up replacing OpenSSL procedure calls with libtlssep procedure calls
in seven source files.

Modifying wget and lighttpd to use our library shows that existing
applications—both client- and server-side—can easily gain the security benefits
provided by libtlssep. In both cases, we completed the port without having
previously studied the application’s source code. The use of CertShim with ex-
isting applications requires even less effort, but CertShim does not provide the
architectural security benefits of libtlssep. New applications will immediately
benefit from choosing libtlssep’s simpler API.

5.3 Performance

To evaluate libtlssep’s performance, we measured latency and throughput
while comparing libtlssep with pure OpenSSL. We made use of a computer
with a 3.4-GHz four-core Intel Core i7-3770 processor and 32 GB of memory.
We ran our tests by requesting data from a local HTTPS server using the loop-
back interface; thus our results amplify the performance differences between
libtlssep and OpenSSL because they omit real network latency.

For testing purposes, we created four HTTPS clients: for each of OpenSSL
and libtlssep, we implemented a latency- and throughput-testing client.
Lighttpd 1.4.36 (compiled to use pure OpenSSL, not libtlssep) provided the
HTTPS server for our test clients. Each benchmark uses the same cipher suite:
ephemeral elliptic-curve Diffie-Hellman, RSA, 128-bit AES, and SHA-256. We
also performed tests using wget and lighttpd, each compiled to use both pure
OpenSSL and libtlssep.

Latency performance: Each of our latency benchmarks repeats the process

of initiating a TLS connection, reading one byte, and then closing the connection.
We measured the time that it took each application to complete 10,000 iterations.
Table 2a summarizes the results of this experiment. We present the results of 10
full runs, along with the mean and standard deviation. The OpenSSL implemen-

XVI

Table 2: Latency and throughput measurements. Both client and server ran on
the same machine and communicated using the loopback interface.

Runtime (seconds)
OpenSSL libtlssep

1 49.341 50.903
2 49.474 51.178
3 49.112 50.783
4 49.358 50.945
5 49.457 50.604
6 50.563 51.212
7 49.818 50.594
8 49.764 51.075
9 49.563 51.028
10 49.353 50.616

µ 49.580 50.894

σ 0.403 0.235

(a) Runtime of 10,000
serial connections
using OpenSSL and
libtlssep.

Runtime (seconds)
OpenSSL libtlssep

101 MB 102 MB 103 MB 101 MB 102 MB 103 MB

1 0.061 0.193 1.517 0.071 0.205 1.625
2 0.061 0.193 1.517 0.070 0.205 1.557
3 0.061 0.193 2.420 0.070 0.206 1.589
4 0.061 0.193 1.521 0.079 0.294 1.585
5 0.061 0.194 1.517 0.070 0.212 1.841
6 0.061 0.194 1.521 0.070 0.212 1.557
7 0.061 0.194 1.559 0.070 0.294 2.446
8 0.061 0.193 1.519 0.071 0.206 1.554
9 0.061 0.194 1.518 0.070 0.207 1.563
10 0.061 0.194 2.417 0.070 0.295 2.456

µ 0.061 0.194 1.703 0.071 0.234 1.777

σ 0.000 0.000 0.378 0.003 0.042 0.365

(b) Single download time of file sizes indicated using
OpenSSL and libtlssep.

tation had an average runtime of 49.580 seconds with a standard deviation of
0.403. The libtlssep implementation had an average runtime of 50.894 seconds
with a standard deviation of 0.235 seconds. On average, libtlssep initiates TLS
connections at 97.4% the rate measured with pure OpenSSL.

Throughput performance: Our throughput benchmarks read files of vary-

ing sizes over a TLS connection. Each creates a single connection, reads 1,024
MB at a time until the entire file is read, and then closes the connection. We
measured the time that it took each application to download 10 MB, 100 MB,
and 1,000 MB files.

Table 2b summarizes the results of this experiment. For the 1,000 MB file, the
pure OpenSSL implementation took an average of 1.703 seconds with a standard
deviation of 0.378, while the libtlssep implementation took an average of 1.777
seconds with a standard deviation of 0.365.

Based on these results, the throughput of libtlssep is 95.8% of that mea-
sured with pure OpenSSL. The slight difference is due to the added overhead
of scheduling an additional process as well as the additional memcpys and RPC-
related shared-memory communication involved. Libtlssep’s throughput dur-
ing our experiments exceeded 4,610 Mb/s.

We also performed benchmarks using both our libtlssep and the upstream-
OpenSSL versions of lighttpd and wget. Here we used variations of the follow-

XVII

Table 3: Single download time of a 1,000 MB file using the OpenSSL and
libtlssep versions of wget and lighttpd.

Runtime (seconds)
OpenSSL server OpenSSL server libtlssep server libtlssep server

OpenSSL client libtlssep client OpenSSL client libtlssep client

1 1.601 2.643 2.066 2.722
2 1.597 2.565 2.055 2.704
3 1.599 2.566 2.247 2.732
4 1.598 2.559 2.040 2.645
5 1.598 2.584 2.056 2.865
6 1.600 2.590 2.052 2.581
7 1.597 2.565 2.103 2.643
8 1.596 2.563 2.051 2.977
9 1.608 2.564 2.054 2.736
10 1.829 2.619 2.059 2.855

µ 1.622 2.582 2.078 2.746

σ 0.073 0.028 0.062 0.120

ing command (note that the libtlssep version of wget presently ignores the
--no-check-certificate option):

time wget --quiet --no-http-keep-alive --no-check-certificate \

-O /dev/null https://127.0.0.1/1000M

We summarize our lighttpd-to-wget results in Tables 3 and 4. The former
table contains measurements of a single 1,000 MB download, and the latter
table contains measurements of three simultaneous 1,000 MB downloads. A sin-
gle serial libtlssep-to-libtlssep download provides approximately 59% the
throughput of its pure-OpenSSL counterpart when transfering over our com-
puter’s loopback interface. This rate would benefit from increasing the size of
the buffers used within lighttpd and wget to reduce the number of RPCs
libtlssep must invoke to transfer data (also recall that our previous experi-
ments used libtlssep only on one side of the connection). Simultaneous trans-
fers fare better; here libtlssep approaches within 68% of OpenSSL’s through-
put. This performance would also benefit from tuning the buffer sizes within
lighttpd and wget.

6 Conclusion

Libtlssep provides application programmers with a simpler API and more se-
cure design for adding TLS support to their applications. Libtlssep is less
ambitious than other projects; it exists between contemporary TLS libraries
and projects such as NaCL [6] and MinimaLT [27]. Libtlssep serves as an
easy-to-integrate, near-term replacement for existing TLS libraries. Nonethe-
less, libtlssep provides better isolation of cryptographic secrets and reduces
the number of pitfalls faced by network programmers.

XVIII

Table 4: Total download time of three simultaneous transfers of a 1,000 MB
file from OpenSSL/libtlssep lighttpd to OpenSSL wgets.

Runtime (seconds)
OpenSSL server libtlssep server

1 4.466 6.449
2 4.470 6.203
3 4.479 6.558
4 4.545 6.621
5 4.622 6.809
6 4.438 6.667
7 4.428 6.725
8 4.432 6.445
9 4.519 6.494
10 4.455 6.310

µ 4.485 6.528

σ 0.061 0.187

Future work on libtlssep will include further performance optimizations,
a review of the library’s source code, and additional application ports. Previ-
ous performance improvements came from replacing our use of Open Network
Computing (ONC) RPC with a custom RPC implementation, moving from a
Unix-socket-based to a shared-memory-based RPC channel, and reusing a single
decorator process across multiple connections within an application. Libtlssep’s
decorator would also benefit from an implementation in a strongly typed lan-
guage such as Go. Once we are satisfied with our implementation and API we
will announce a stable release; our research prototype is already available at
http://www.flyn.org/projects/libtlssep.

Acknowledgments

We thank Suzanne Matthews, Kyle Moses, and Christa Chewar for their com-
ments on our early work, our anonymous referees for comments on subsequent
drafts, and the United States Military Academy for their support. We are also
grateful to Colm MacCárthaigh who encouraged us to pursue using shared mem-
ory to improve the performance of libtlssep’s RPC channel.

References

[1] Fedora system-wide crypto policy. http://fedoraproject.org/wiki/Changes/

CryptoPolicy [Accessed Mar 22, 2014]

[2] Barnes, R.L.: DANE: Taking TLS authentication to the next level using DNSSEC.
IETF Journal (Oct 2011), http://www.internetsociety.org/articles/dane-

taking-tls-authentication-next-level-using-dnssec [Accessed Jun 22,
2015]

[3] Bates, A., Pletcher, J., Nichols, T., Hollembaek, B., Tian, D., Butler, K.R., Alkhe-
laifi, A.: Securing SSL certificate verification through dynamic linking. In: Pro-

XIX

ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. pp. 394–405. CCS ’14, ACM, New York, NY, USA (2014)

[4] Beck, B.: LibreSSL: The first 30 days and the future (May 2014), presentation at
the 11th BSDCan Conference

[5] Bernstein, D.J.: CurveCP: Usable security for the Internet. CurveCP: Usable se-
curity for the Internet, http://curvecp.org [Accessed Jul 9, 2015]

[6] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: International Conference on Cryptology and Information Secu-
rity in Latin America. Lecture Notes in Computer Science, vol. 7533, pp. 159–176.
Springer (2012)

[7] Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A messy state of the union: Taming
the composite state machines of TLS. In: Proc. IEEE Symp. Security and Privacy.
IEEE Computer Society Press, Washington, DC, USA (May 2015)

[8] Bhargavan, K., Lavaud, A., Fournet, C., Pironti, A., Strub, P.: Triple handshakes
and cookie cutters: Breaking and fixing authentication over TLS. In: Proc. IEEE
Symp. Security and Privacy. pp. 98–113. IEEE Computer Society Press, Wash-
ington, DC, USA (May 2014)

[9] Bittau, A., Hamburg, M., Handley, M., Mazières, D., Boneh, D.: The case for ubiq-
uitous transport-level encryption. In: Proceedings of the 19th USENIX Security
Symposium. USENIX Association, Berkeley, CA, USA (Aug 2010)

[10] Cox, R., Grosse, E., Pike, R., Presotto, D., Quinlan, S.: Security in Plan 9. In: Proc.
of the USENIX Security Symposium. pp. 3–16. USENIX Association, Berkeley,
CA, USA (2002)

[11] Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
certificate ecosystem. In: Proceedings of the 2013 Conference on Internet Mea-
surement. pp. 291–304. IMC ’13, ACM, New York, NY, USA (2013)

[12] Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., Freisleben, B.:
Why Eve and Mallory love Android: an analysis of Android SSL (in)security.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security. pp. 50–61. ACM, New York, NY, USA (2012)

[13] Fahl, S., Harbach, M., Perl, H., Koetter, M., Smith, M.: Rethinking SSL develop-
ment in an appified world. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security. pp. 49–60. CCS ’13, ACM, New York,
NY, USA (2013)

[14] Electronic Frontier Foundation: HTTPS everywhere, https://www.eff.org/

https-everywhere [Accessed Aug 26, 2013]
[15] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The

most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security. pp. 38–49. CCS ’12, ACM, New York, NY, USA (2012)

[16] Guan, L., Lin, J., Luo, B., Jing, J., Wang, J.: Protecting private keys against
memory disclosure attacks using hardware transactional memory. In: Proc. IEEE
Symp. Security and Privacy. IEEE Computer Society Press, Washington, DC,
USA (May 2015)

[17] He, B., Rastogi, V., Cao, Y., Chen, Y., Venkatakrishnan, V., Yang, R., Zhang, Z.:
Vetting SSL usage in applications with SSLint. In: Proc. IEEE Symp. Security
and Privacy. IEEE Computer Society Press, Washington, DC, USA (May 2015)

[18] Hoffman, P., Schlyter, J.: RFC 6698: The DNS-based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) protocol: TLSA. http://www.

XX

ietf.org/rfc/rfc6698.txt [Accessed Jun 22, 2015] (Aug 2012), status: PRO-
POSED STANDARD

[19] IOerror: DigiNotar damage disclosure. The Tor Blog (Sep 2011), https://blog.
torproject.org/blog/diginotar-damage-disclosure [Accessed May 20, 2015]

[20] Kneschke, J., et al.: lighttpd, http://www.lighttpd.net/ [Accessed Jun 22,
2015]

[21] Leavitt, N.: Internet security under attack: The undermining of digital certificates.
Computer 44(12), 17–20 (Dec 2011)

[22] Marlinspike, M.: Null-prefix attacks against SSL/TLS certificates. Presentation at
Black Hat USA (Jul 2009), http://www.blackhat.com/presentations/bh-usa-
09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf [Accessed Jun
22, 2015]

[23] Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y., Mellia, M., Munafò,
M., Papagiannaki, K., Steenkiste, P.: The cost of the ‘S’ in HTTPS. In: Pro-
ceedings of the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies. pp. 133–140. CoNEXT ’14, ACM, New York, NY,
USA (2014)

[24] NIST National Vulnerability Database: CVE-2014-0160. http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2014-0160 (Dec 2013), [Accessed Apr 15,
2014]

[25] OpenBSD manual pages: imsg init(3), http://www.openbsd.org/cgi-bin/man.

cgi/OpenBSD-current/man3/imsg_init.3 [Accessed Jul 8, 2015]
[26] Petullo, W.M., Solworth, J.A.: Simple-to-use, secure-by-design networking in

Ethos. In: Proceedings of the Sixth European Workshop on System Security. EU-
ROSEC ’13, ACM, New York, NY, USA (Apr 2013)

[27] Petullo, W.M., Zhang, X., Solworth, J.A., Bernstein, D.J., Lange, T.: MinimaLT:
Minimal-latency networking through better security. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security. CCS ’13,
ACM, New York, NY, USA (Nov 2013)

[28] Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: Proc. of
the USENIX Security Symposium. pp. 231–242. USENIX Association, Berkeley,
CA, USA (Aug 2003)

[29] Schmidt, S.: Introducing s2n, a new open source TLS implementation. Amazon
Web Services Security Blog (Jun 2015), https://blogs.aws.amazon.com/

security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-Open-Source-TLS-

Implementation [Accessed Jul 1, 2015]
[30] Scrivano, G., et al.: wget, http://www.gnu.org/software/wget/ [Accessed Jun

22, 2015]
[31] Soghoian, C., Stamm, S.: Certified lies: detecting and defeating government in-

terception attacks against SSL. In: Proceedings of the 15th international confer-
ence on Financial Cryptography and Data Security. pp. 250–259. FC’11, Springer-
Verlag, Berlin, Heidelberg (2012)

[32] Vratonjic, N., Freudiger, J., Bindschaedler, V., Hubaux, J.P.: The inconvenient
truth about web certificates. In: Proceedings of the 10th Workshop on the Eco-
nomics of Information Security (Jun 2011)

[33] Ylonen, T.: SSH—secure login connections over the Internet. In: Proc. of the
USENIX Security Symposium. pp. 37–42. USENIX Association, San Jose, Cali-
fornia (1996)

[34] Zimmermann, P.R.: The Official PGP Users Guide. MIT Press, Boston, Mas-
sachusetts, U.S.A. (1995)

