
Studying
Naïve Users and the Insider Threat with SimpleFlow

Ryan Johnson
ryan.v.johnson.mil@mail.mil

Jessie Lass
jessie@lassimus.com

W. Michael Petullo
mike@flyn.org

Department of Electrical Engineering and Computer Science
United States Military Academy

West Point, New York USA

ABSTRACT
Most access control systems prohibit illicit actions at the mo-
ment they seem to violate a security policy. While effective,
such early action often clouds insight into the intentions behind
negligent or willful security policy violations. Furthermore, ex-
isting control mechanisms are often very low-level; this hinders
understanding because controls must be spread throughout a
system. We propose SimpleFlow, a simple, information-flow-
based access control system which allows illicit actions to occur
up until sensitive information would have left the local network.
SimpleFlow marks such illicit traffic before transmission, and
this allows network devices to filter such traffic in a number of
ways. SimpleFlow can also spoof intended recipients to trick
malware into revealing application-layer communication mes-
sages even while blocking them. We have written SimpleFlow
as a modification to the Linux kernel, and we have released our
work as open source.

1 Introduction
Most modern access control systems immediately deny all unau-
thorized activity on a system. This holds for the discretionary
filesystem access controls found in Unix and also for Security-
Enhanced Linux (SELinux); both stop any action that is unau-
thorized as soon as a violation occurs. Network firewalls also
behave this way as they block suspected malicious traffic from
ever interacting with the protected network. Access controls fol-
lowing this pattern reduce how much information we can gather
about an attack because the security models require that the at-
tack fail early. With current systems we must decide whether we
wish to enforce strong security or maintain the ability to gain fur-
ther information about an attack; it is difficult to provide both.

Consider a user Mallory who wishes to exfiltrate sensitive
data contained in file f from her corporate network. Many
contemporary systems provide a choice: either (1) forbid
Mallory from reading f, which might prevent users such as
Mallory from performing benign work; or (2) allow Mallory to
read f, which might allow Mallory to inappropriately transmit
the contents of f. A third possibility, an air-gap network, is

This paper is authored by employees of the United States Government and is in the public
domain.
Permanent ID of this document: 1d99a38f432d84dc52936f334acc15d5.
Date: September 15, 2016.

MIST’16, October 28 2016, Vienna, Austria
ISBN 978-1-4503-4571-2/16/10.

DOI: http://dx.doi.org/10.1145/2995959.2995960

inconvenient and incurs a high monetary cost. A secondary
disadvantage of (1) is that if Mallory were to attempt to access f
and fail, then it is likely that Mallory could claim her access was
accidental, as there would be little evidence of malicious intent.
We are interested in allowing Mallory to read f for legitimate
work while collecting clear evidence of Mallory’s intentions
and preventing Mallory from exposing f outside of the local
network. Our goals are the same for accidentally-executed
malware which acts under the principals of other users.

In this paper, we introduce SimpleFlow, an information-
flow-based access control system which spans an operating
system kernel modification and a network filter. We imple-
mented the kernel aspect of SimpleFlow as a Linux Security
Module (LSM). SimpleFlow:

• modifies the Linux kernel and thus can constrain all
processes on the host it protects,

• demonstrates an information-flow-based access-control
system based on the LSM interface,

• delays access controls until a process tries to write
confidential data outside of the local network,

• spoofs blocked recipient hosts to reveal application-layer
communication messages and thus discover the intentions
of malware,

• requires few changes outside of the kernel, and

• incurs a small runtime overhead.

The design of SimpleFlow enables the study of näıve and
malicious users as they use the system by allowing them to act
freely, yet it denies their ability to exfiltrate confidential data.
SimpleFlow composes well with other access control systems,
so existing mechanisms can protect information in other ways
as required.

In the following sections, we describe related work (§2); sum-
marize our threat model (§3); describe the design of the Simple-
Flow LSM and network (§4); and present performance results
along with examples of the practical use of SimpleFlow (§5).

2 Related work
Saltzer et al. established five basic principles of access control
with Multics, and these provide the foundation for security in
today’s computing systems [28]. The principles are: (1) check
permissions on each access, (2) protect based on permission
rather than exclusion, (3) secure by design rather than obscurity,
(4) grant each process only the least privilege necessary, and
(5) provide simple, easy-to-use interfaces. In modern Unix-like



systems, these principles primarily manifest as memory
protections and controls on filesystem access.
Unix: The Unix kernel isolates the memory of each process

and ensures that processes cannot directly interact with the
kernel’s memory or most hardware. Processes must make use
of kernel-mediated system calls to access files and other system
objects. The owner of each system object determines the access
controls which apply to the object. A special user, root, is not
subject to Unix’s discretionary access controls.

It is advisable to avoid running network-facing dæmons as
root or to only run dæmons that drop privileges immediately
after performing the privileged operations necessary to set up
a connection. Unix-like systems grant least privilege by making
use of pseudouser accounts. Such accounts only exist to run a
particular dæmon, and they only provide access to the resources
the dæmon needs to satisfy its purpose.

Bernstein designed the qmail mail-transfer agent with least
privilege in mind [6], and it exemplifies how many network
services implement the principle of least privilege on modern
Unix systems. Qmail runs a core dæmon process which
executes separate delivery processes under the user ID of each
email’s recipient. While the core process must run as root so
that it may start processes under other users’ IDs, the other
components of qmail are subject to the access controls already
present in Unix. This minimizes the amount of code in qmail
and hence reduces the chance for bugs. Bernstein justifies this
design because the core process is very small, highly-audited,
and well-controlled. Other programs follow similar designs [26].

Other programs, including many applications built on Apache,
implement their own access control system. This removes the
need to maintain root privileges, but it has a significant conse-
quence: a vulnerability anywhere in Apache might provide access
to anything that Apache controls, whereas a compromised qmail
component would likely only provide the attacker with access to a
small subset of qmail’s resources. Furthermore, applications built
on Apache often duplicate the access controls found in Unix and
these additional lines of code present more possibilities for bugs.
Limitation of discretionary access controls: An impor-

tant limitation of the Multics model was acknowledged by
its authors [28, final ¶ on p. 392]. Namely, users decide the
access controls for the system objects they own. This confounds
preventing insider attacks within a protected subsystem; ad-
ministrators cannot restrict data sharing without extending the
standard access control list mechanism. The traditional access
controls of the Unix filesystem exhibit a similar limitation.
Linux Security Module and netfilter: Linux supports

alternate security models with its LSM framework [33].
Developers of an LSM can add arbitrary security context to
key kernel data structures, and the kernel will invoke their LSM
callback functions to decide whether to allow or deny a system
call [29]. LSM also provides a /proc-based interface with which
an administrator can interact with the running LSM.

Similarly, the Linux kernel’s NetFilter subsystem [2] allows
programmers to write custom network-filtering modules. The
NetFilter interface is similar to LSM in that it exists as a set
of hooks, here throughout the Linux kernel’s network stack.
A NetFilter module registers callback functions against these
hooks in order to affect the kernel’s processing of packets.
Mandatory access controls: Mandatory access controls

set a security policy which cannot be subverted by normal users.
SELinux builds on top of LSM to provide a type-enforcement
security model. SELinux enforces a policy to constrain
programs more precisely than traditional Unix controls, and

this policy is not subject to root or system-object owners. Yet
SELinux’s sample policy is very large [22], and its complexity
leads many users and system administrators to simply disable
SELinux entirely [13]. It seems that SELinux is complex
because its access control model follows very closely the
low-level semantics of Unix’s system calls.
Information-flow-based access controls: If programmers

have difficulty wisely using Unix’s system calls and security
facilities, then it is likely that policy engineers would likewise
have trouble appropriately constraining programs through
low-level policy. Instead of reasoning about low-level operations
and objects, systems such as IX [18] and HiStar [35] aim to
provide a simpler security model based on information flow. IX,
an early implementation of multi-level security for Unix, adjusts
the labels on outputs based on system calls which involve
information flow. IX is more dynamic than the prescription
of the so-called Orange Book [9], but it still denies access to
high levels of information before an unauthorized user might
reveal his intentions. We note the portions of SimpleFlow
which follow IX throughout this paper.

Other researchers have applied similar approaches elsewhere
in the software stack. Some programming languages—such
as Perl [3], Jif [21], and Jif’s subsequent work—provide
information-flow-based protections. Similar protections also
exist within applications; one example is the cross-site-scripting
defense in the Chromium browser [30].
Provenance systems: Systems which track the origin

and evolution of the data they process are said to exhibit
whole-system provenance. (Here there is often overlap between
monitoring and access control.) Recent work in this field
includes Panorama [34], Hi-Fi [24], and Linux Provenance
Modules (LPM) [4].

Panorama discovers information flow by running a system
within a processor emulator and considering the information-flow
effect of each processor instruction. This means that Panorama
can work with closed-source operating systems which cannot
be modified, but Panorama decreases runtime performance by
a factor of 20; thus Panorama targets off-line analysis.

Both Hi-Fi and LPM modify the Linux kernel. Like Sim-
pleFlow, Hi-Fi makes use of LSM. LPM provides a LSM-like
interface which allows writing provenance modules. The initial
LPM release provided two reference implementations: Provmon,
which extends Hi-Fi with file versioning and improved network
context, and SPADE. LPM provides a data-loss prevention tool
which makes use of special file-transfer utility to permit or deny
transfers based on LPM’s information-flow analysis.

SimpleFlow resembles Hi-Fi and LPM. Most notably, Sim-
pleFlow shares with Hi-Fi the use of LSM; we note other
similarities throughout this paper. Yet SimpleFlow favors sim-
plicity by dictating a security model and discerns more informa-
tion through the use of network spoofing. Because SimpleFlow
combines authorization and provenance over confidential files, it
can implement a fixed label like IX [18, §2.4]; we describe this in
§4.1.5. SimpleFlow also mediates all IP traffic instead of rely-
ing on a specialized file-transfer utility like LPM; SimpleFlow
could make use of a specialized utility to sanitize confidential
messages, but public network traffic flows unimpeded. Simple-
Flow also avoids LPM’s provenance-graph-size bottleneck [4,
§5.3]. Table 1 summarizes the differences between SimpleFlow
and the access-control and provenance systems described above.
The evil bit and security labeling: Bellovin describes the

placement and use of a security flag within IPv4 headers in
RFC 3514, released on April 1st (April Fool’s Day), 2003. The



System Properties
Multics X X
Traditional Unix X X
SELinux X X X
IX X X X
Panorama X X
Hi-Fi X X
LPM X X
SimpleFlow X X X X X X X

Kernel agnostic
Low overhead
Provenance∗

Access controls
Centralizes granting of permissions
Delays access controls until net. write
Labels IP traffic without transfer utility
Block connections yet reveal app.-layer messages

∗The provenance systems could recreate some of SimpleFlow’s
features using external tools, but they might have difficulty
scaling as the provenance graph grows.

Table 1: Comparison of provenance and access-control systems

RFC declares the previously-unused high-order bit of the IP
fragment offset field—originally marked as reserved in RFC 791
[25]—as the evil bit [5]. The RFC requires that malicious users
set this bit to indicate that firewalls should drop their packets.

Due to its satirical nature, there is little practical use of
RFC 3514. Matthew Dodd submitted a patch to FreeBSD
that implemented support for the evil bit on the day the RFC
was released [10], but the FreeBSD team removed the patch
the next day [11]. The patch caused FreeBSD to discard all
transmitted and received evil packets. Ben Cox implemented
a small patch to set the evil bit on all outgoing traffic in the
Linux kernel. In doing so, he was able to find a small list of
domains which refused evil connections. He also implemented
some basic rules in iptables to allow only connections which
satisfied various evil-bit and port requirements [8].

RFC 1108 [15] and RFC 5570 [14] describe a scheme for label-
ing the security classification of IPv4 and IPv6 packets, respec-
tively. This is a more serious feature, yet it resembles the simpler-
if-less-expressive evil bit. Commercial products exist which have
the ability to filter on these fields [7, see IP Security Options].

3 Threat model
SimpleFlow monitors and restricts non-root users as they go
about their work in a SimpleFlow-protected subnet. Simple-
Flow users might be näıve insiders—who are at risk of unin-
tentionally performing some action to reveal sensitive data—or
malicious insiders—trusted users who intend to violate the con-
fidentiality of sensitive data. Users can operate a SimpleFlow
host—either graphically, through the network, or through a local
shell account—to execute programs, access sensitive or confiden-
tial data subject to traditional Unix access controls, and send
non-sensitive data over the network. The goal of SimpleFlow
is to (1) forbid the exfiltration of data an administrator has
marked as confidential from the SimpleFlow-protected subnet
and (2) allow the attacker freedom of action so that administra-
tors can safely assess the attacker’s intentions and techniques.

SimpleFlow cannot itself prevent a local user who observes
and remembers sensitive data from manually entering it into
a host outside of the SimpleFlow subnet. This type of
determined insider can be thwarted by controlling the use of
pen-and-paper notebooks and other non-technical measures.

However, a user who logs into a SimpleFlow host from outside
the SimpleFlow subnet will find himself unable to display con-
fidential data over his network connection. This holds even while
his other programs—those that avoid transmitting the data—are
able to locally process the data. SimpleFlow’s protections do
not extend to removable media, but we describe two strategies
for addressing removable media without further modifications
to SimpleFlow itself in §4.1.5. In any case, SimpleFlow
provides a clear record of all confidential data access.

We do not claim to protect against malicious-but-trusted
administrators because they can: (1) detect the presence of Sim-
pleFlow and thus might avoid malicious actions, (2) untaint
a process using SimpleFlow’s /proc interface, (3) manipulate
the confidentiality labels on system objects, and (4) mark
programs as trusted and thus not subject to SimpleFlow.
While Unix-based systems are sometimes susceptible to attacks
which escalate a normal user to root, administrators can reduce
the likelihood and hazard of these threats by applying the least-
privilege principle. This includes installing with care setuid-bit
programs and dæmons which run with special privileges.

SimpleFlow is dependent on the integrity of the Linux
kernel and its ability to isolate processes and mediate system
calls using the running LSM. SimpleFlow leaves the protection
of the kernel, a hypervisor, and hardware to techniques such
as software verification and measured and verified booting.

SimpleFlow’s design allows for the system administrator
to designate crucial data that cannot leave the network. An
administrator with root access manages the confidentiality of
data, and the SimpleFlow kernel enforces the administrator’s
settings. We do not claim to remove all covert channels
with SimpleFlow; however, we do address a number of
high-bandwidth channels in §4.1.3.

4 Design and implementation
SimpleFlow aims to protect confidential information on a
system regardless of the design of applications attempting
to access this information. We accomplish this by tracking
information flow as it propagates through the system as a result
of system calls, albeit in a manner much less sophisticated than
that of IX or HiStar. As we are interested in understanding
the mistakes or intentions of näıve and malicious users, we set
out to allow dangerous behavior to continue up until it tries
to communicate outside of an isolated subnet.

Under SimpleFlow, the system administrator designates
some filesystem objects as confidential and some programs as
trusted. (Similar to SELinux, SimpleFlow stores both using ex-
tended attributes in the filesystem.) Any process not loaded from
a trusted program will become tainted upon reading from a confi-
dential object. The kernel transfers this taint status from process
to process as a result of inter-process communication (e.g., an
untainted process reads from a tainted process over Unix socket).
If a tainted process writes to the network, then the kernel sets the
packet’s RFC 3514 evil bit; this allows for a variety of filtering
or spoofing strategies which might help determine the intention
of the principal who read the confidential data in the first place.

SimpleFlow considers as confidential filesystem objects
which bear a security.simple-flow.confidential extended
attribute set to true. A privileged administrator can use
standard tools such as getfattr and setfattr to view or
set this value. An administrator can also mark an executable
file as trusted by setting its security.simple-flow.trusted

extended attribute to true. Hi-Fi [24, §5.5] and LPM [4, 3.4.4]
similarly use extended attributes.



secret

pipe

wget

exfilcat

true

Host protected by SimpleFlow

Network filter

Kernel

Information flow resulting from system call
Network transmission

Blocked &
spoofed
due to evil bit

Routed

¶

·
¸

¹

º
»

¼

½ ¾

Figure 1: SimpleFlow in practice: mediating cat se-

cret | exfil; on the left is a host running the SimpleFlow
kernel, and on the right is the SimpleFlow network filter

Figure 1 depicts a practical use of SimpleFlow. Here a
user ran the command cat secret | exfil in an attempt to
exfiltrate the contents of secret. Let us assume exfil tries
to transmit the secret using an HTTP POST request.

¶ Cat invokes the open system call to open the file secret

for reading. Since this file is confidential, the kernel taints
the process running cat when it reads from the file.

· The cat process forks a child, executes exfil, and
writes the contents of the secret file over a pipe to exfil.

¸ SimpleFlow marks the pipe as confidential because cat

wrote to it while tainted.

¹ Exfil reads the contents of the secret file from the pipe
and becomes tainted.

º Exfil attempts to send the contents of the secret file
within an IP packet toward the attacker’s command-and-
control server. Since exfil is tainted, SimpleFlow sets
the evil bit on any such IP packet exfil produces.

The second aspect of SimpleFlow is its network filter. The
purposes of the filter are (1) to ensure that packets which
contain sensitive data do not leave the SimpleFlow-protected
subnet and (2) to extract information about the nature of
the attacker’s exfiltration attempt. Recall that the attacker
might be using HTTP or another protocol on top of TCP as
an exfiltration channel. The filter will block evil DNS request
datagrams and TCP SYN segments, and so we are at risk of
exfil giving up before sending the application-layer request
that should follow the initial connection setup. This missing
information would be valuable to the defenders, as it reveals the
attacker’s attempted exfiltration channel. Returning to Figure 1:

» The network filter spoofs the DNS server and intended
recipient of an evil-bit exfiltration packet, thus responding
to DNS requests and completing the three-way handshake.

¼ Exfil begins sending its application-layer request. This
message is blocked but recorded by the network filter.

SimpleFlow does not impede normal network traffic:

½ An unrelated process running wget is not tainted, and
it sends an IP packet.

¾ The network filter routes this benign packet to the Internet.

Thus SimpleFlow forbids the transmission of many exfiltration
packets, but leaves other packets unimpeded.

4.1 SimpleFlow kernel module
We implemented SimpleFlow’s access controls as an LSM. As
with previous work, this ensures that user applications cannot
bypass SimpleFlow’s controls.

4.1.1 Security context
SimpleFlow adds a number of fields to the kernel data
structures capable of bearing arbitrary security data. First,
SimpleFlow adds a Boolean owner_tainted field to the
inode, socket, message queue, and shared-memory structures
to represent whether the communication channel is tainted
and hence whether the kernel should taint untrusted processes
which read from the channel. SimpleFlow also adds tainted

and trust_mask fields to the task structure to manage the
state of processes. Finally, SimpleFlow adds to the socket
structure a pointer back to the task which created the socket.

4.1.2 Mediation points
SimpleFlow registers a number of LSM hooks to track
information flow across each of the system calls which permit
I/O. Here we describe some of the unique aspects of each such
mediation point.
File and pipe I/O: SimpleFlow mediates file and pipe

I/O using the file_open and file_permission hooks. The
file_open implementation logs the interaction with confiden-
tial files for diagnostic purposes. The file_permission hook
serves two purposes: (1) on reads, the function checks whether
the inode in question has its owner_tainted field set and
whether the reader is not trusted; if both are true, the kernel
taints the reader. (2) on writes, the function checks to see if the
writer is tainted; if so, the kernel sets the inode’s owner_tainted

field to true. In the case of a write, the kernel also tries to
set the target object’s security.simple-flow.confidential

extended attribute.
Pipes provide an additional requirement. It is possible that

a reader blocks while waiting for data, and while the reader is
blocked, a writer taints the pipe with a write. Since the existing
Linux kernel invokes file_permission only before blocking,
we added a new LSM call to the kernel in pipe_read.

Sockets: SimpleFlow mediates sockets with the socket-

_post_create, socket_sock_rcv_skb, file_permission,
socket_recvmsg, and socket_sendmsg hooks along with a
netfilter module which provides NF_INET_LOCAL_OUT functions
for IPv4 and IPv6. This affects Unix-domain, IPv4, and IPv6
sockets.

SimpleFlow’s socket_post_create implementation sets
the socket’s task and owner_tainted fields, based on the
process which creates the socket. The task field is important
because the process which is in execution when the kernel later
transmits the packet might not be the process associated with
the packet.

For network sockets, incoming data causes the kernel to
invoke socket_sock_rcv_skb before file_permission. This
allows the kernel to inspect the incoming packet’s evil-bit field.
If it is set, the kernel sets the receiving socket’s owner_tainted

field to true. Thus SimpleFlow’s taint status will pass from
a process on one SimpleFlow host to a process on another
across a network. (This is not true if both hosts are not running
SimpleFlow, but we assume non-SimpleFlow hosts are
beyond the network filter.)
File_permission behaves as it did while mediating file I/O.

Here it sets or gets the socket’s owner_tainted field instead of
the inode’s. The exception is with a Unix socket, where the



inode still bears the taint status; this serves as an analog to the
use of socket_sock_rcv_skb with IP sockets.

SimpleFlow invokes file_permission in response to hav-
ing its socket_recvmsg or socket_sendmsg implementations
called. This ensures the mediation of UDP-style I/O.

Finally, SimpleFlow uses a netfilter module to set the
evil bits of tainted packets. For both IPv4 and IPv6,
SimpleFlow registers a function that inspects the subject
socket’s owner_tainted field and possibly sets the packet’s
evil bit. Hi-Fi [24, §5.6] and LPM [4, §3.4.2] similarly use a
netfilter module; each of these set a unique identifier on TCP
connections or UDP datagrams. SimpleFlow needs only a
single bit because its analysis precedes packet transmission.
Pseudo terminals: Linux provides pseudo-terminal devices

to aid programmers who wish to write software-based terminals
such as remote shells and X11 terminals. A process which opens
/dev/ptmx will receive a file descriptor which the process can
use to establish a peer device, /dev/pts/n. A child process
can then read and write /dev/pts/n to communicate with
its parent reading and writing on /dev/ptmx as if it were
communicating with a hardware terminal. The parent can then
serve as a bridge between its child and X11 or a network server.

Code paths in simple_flow_file_permission handle
pseudo terminals along with other files. In the case of terminals,
a tainted process that writes to a pseudo terminal causes
SimpleFlow to mark the device’s peer pseudo terminal.
SystemVmessage queues: SimpleFlow mediates System

V message queues by implementing the msg_queue_msgsnd and
msg_queue_msgrcv hooks. These functions set the message
queue structure’s owner_tainted field or the calling process’s
tainted field under the appropriate conditions.
Sharedmemory and mmap: Shared memory is troublesome

because the kernel does not mediate access after it initially
attaches a process. Instead, processes can directly manipulate
shared memory as they can any other memory in their
address space. To maintain control, SimpleFlow implements
shm_shmat and mmap_file, and it also performs other checks
during the lifetime of a shared memory segment. We describe
this in detail in §4.1.5.

4.1.3 Mediation with covert-channel considerations
SimpleFlow removes or monitors a number of covert
channels. We leave a full covert-channel analysis of Linux and
SimpleFlow to future work, but discuss the high-bandwidth
channels SimpleFlow considers here. We refer the reader to
the Orange Book [9] for an introduction to covert channels and
the tradeoffs involved in covert-channel mitigation.
Seek pointers: A Linux process inherits file offset pointers

for existing file descriptors from its parent, and thus the lseek

system call can be abused to create a covert channel [18,
§7.2]. We added a new LSM hook, security_file_lseek to
the Linux kernel. If a tainted process seeks on a file which
is also opened by another process, then our implementation
of security_file_lseek marks the file as confidential. Our
security_file_lseek similarly taints a process which seeks
on a confidential file. Modern Unix conflates seek and tell.
IX returned to these separate calls for more precise control, but
we found this too intrusive because it would require modifying
applications.
File names: Filesystem names provide a channel for

communication which is not subject to checks on file writes—a
process might try to write confidential data to the name
of a file. Thus SimpleFlow implements inode_create,

inode_mkdir, inode_mknod, inode_link, inode_symlink,
and inode_rename to mark as confidential any directory whose
names are modified by a tainted process. SimpleFlow taints
processes which call getdents (i.e., with ls) on confidential
directories, as getdents invokes the same LSM hook as read.

Another channel involves a process p1 creating a series
of ordered filenames such as 1–n, reading confidential data
(and becoming tainted), and then removing the files whose
names correspond with the zeros in the message’s binary form.
Process p2 could then check the existence of each file to read
the message. Since this involves p2 using open instead of
getdents, SimpleFlow implements inode_permission to
taint a process which reads or executes a marked directory
inode. The kernel invokes this LSM hook repeatedly as it
walks a path before servicing an open, so this prevents p2 from
reading from this channel without becoming tainted.
Getting standard file attributes: A Unix process can

modulate information as a series of variably-sized files or
file modification times; another process could demodulate
this information by using stat instead of read. Daniel
Ford demonstrated a practical use of this covert channel
during the experiments we will describe in §5. For this reason,
SimpleFlow’s implementation of inode_getattr now taints a
process which calls a stat-like system call on a confidential file.
Getting and setting extended file attributes: Simple-

Flow’s inode_getxattr and inode_setxattr implementa-
tions forbid processes from passing confidential data through
extended attributes. A tainted process which sets an extended
attribute on a file causes the kernel to mark the file as
confidential. A process which reads an extended attribute from
a confidential file causes the kernel to taint the process.

SimpleFlow also entirely forbids unprivileged users
from getting or setting the SimpleFlow-related extended
attributes such as security.simple-flow.confidential. For
privileged users who set these fields, inode_setxattr resets
the owner_tainted field in the inode structure associated with
the target object.
Program execution: Parent processes share a number of

data with their children in the form of the user area [18, §7.2].
When a process forks a child, SimpleFlow ensures the taint
status of the child matches the parent.

SimpleFlow also implements bprm_set_creds to check
whether the program being loaded by an exec is trusted or
marked as confidential. If it is trusted, then the kernel sets
the process’s trusted field to true, and if necessary the kernel
untaints the process. If the program is confidential, then the
kernel taints the process.
Proc filesystem: A program can overwrite the values

pointed to by its argument pointers (i.e., second argument to
main in C), and thus affect /proc/<pid>/cmdline. A tainted
process could modify these values, and another process might
read them. We addressed this by implementing d_instantiate

to check the process associated with a /proc/<pid> path and
mark the path confidential if the process is tainted.
Process exit codes: Process exit codes provide a communi-

cation channel at a rate of one byte per fork, exit, and wait.
We found tainting all processes which wait on other tainted
processes prohibitive in practice as it resulted in too many
tainted processes; the process tree would taint back towards the
init process. Yet we observed the use of this channel during
the practical experiments we will describe in §5. Thus Sim-
pleFlow now taints a process which waits on a tainted child
only if the parent’s program does not bear a security.simple-



flow.trusted label set to wait or true. A program whose
label is set to wait avoids only being tainted due to a wait;
the label true prevents tainting entirely, as described earlier.

An administrator might prevent user programs from tainting
system programs by labeling certain user-transitioning programs
such as X11’s display manager, login, or sshd. Or, he might
label all root-owned programs except for interpreters. Most
system programs would not demodulate the contents of a file
from exit codes without a control-flow compromise.
EADDRINUSE-type channels: One process can signal another

by either exclusively reserving or not reserving a system object.
One proposal we encountered during our testing follows: A
tainted process p1 could bind to a transport-layer network port
in a 255-port range, and another process p2 could try to bind

to each port in the same range. Process p2 will receive an EAD-

DRINUSE error as a result of binding to some port in this range,
and that port value is the byte communicated from p1 to p2.

SimpleFlow aims to reduce the bandwidth of this type
of channel. In the case of the bind channel, SimpleFlow
implements socket_bind to taint a process which attempts to
bind to a port already held by a tainted process. This reduces
a success/fail channel to a success/taint channel, which is much
less convenient to the attacker.

4.1.4 Administrative interfaces
The SimpleFlow /proc interface: SimpleFlow uses get-

procattr and setprocattr to allow privileged administrators
to get and set the taint values of individual processes. Reading
from /proc/<pid>/attr/current will provide either a "1\n"

or "0\n", depending if the process in question is tainted or
not. (The command ps auxZ presents this information in a
nice format.) Writing the same values will cause the kernel to
taint or untaint the process.

We wanted our /proc interface functions to return -EPERM

to unprivileged users who try to get or set the values it exports.
However, we found that some existing utilities were not pro-
grammed to properly handle -EPERM [27]. Thus SimpleFlow
presently returns -ENODATA in the case of inadequate privileges.
The syslog interface: SimpleFlow implements the sys-

log hook to ensure only root can access the kernel’s message
ring buffer using dmesg. This prevents unprivileged users from
reading SimpleFlow’s log messages. SimpleFlow’s imple-
mentation of syslog returns -EPERM when invoked by an
unprivileged process to read the contents or size of the ring buffer.

Privileged users can use dmesg to access all of Simple-
Flow’s messages. SimpleFlow logs when trusted programs
execute, when untrusted processes read a confidential file, the
propagation of the taint status, the presence of evil bits in
packets, and a number of other things which are useful to track
the activities of users on the system.
The ptrace interface: Oliver DiNallo demonstrated a

practical use of ptrace to extract confidential data during
the experiments we will describe in §5. SimpleFlow now
implements ptrace_access_check to ensure that a tainted
process does not leak confidential information through Linux’s
debugging interface.

4.1.5 Tradeoffs and considerations
Trusted programs: SimpleFlow’s concept of trusted pro-

grams provides an administrator with a way to exempt certain
programs from mediation. SimpleFlow logs the activities of
such programs, but it does not taint them. This allows some
programs to transfer confidential data over the network, and

the notion of trust also serves as a stop-gap for troublesome
programs such as X11. Clearly, trusted programs present a
hazard, so administrators should designate them with care.
Persistence of taint status: Another consideration is

whether to preserve on disk a confidential label which prop-
agated to a file through process interactions. If a tainted process
creates or writes to a non-confidential file, then should the oper-
ating system mark that file as confidential in a persistent way?

Consider the case where a malicious actor compromises
Firefox so he can read and attempt to exfiltrate a confidential
file. Further imagine that Firefox, during subsequent benign
operations, modifies one of its user settings. If the kernel marked
the settings file as confidential when the tainted Firefox process
wrote to it, then Firefox could not communicate over the network
until a privileged administrator cleared the confidentiality of the
configuration file. This is because each time Firefox restarted,
it would reread its configuration file and become tainted
again. Files like .bash_history pose a similar challenge. This
problem is well known: LPM names the problem overtainting
[4, §3.4.5], Jif addresses it with declassification [21], and it
resembles the high-water mark described by Weissman [32].

We follow IX and support fixed labeling [18, §2.4]. Adminis-
trators can set files such as .bash_history as fixed by setting
the extended attribute security.simple-flow.confidential

to never. A tainted process cannot write to an object bearing
this label; such a write would fail with the -EPERM error code.

We recognize that this decision might make applications
occasionally fail. However, never persistently marking any files
would provide many opportunities for an attacker to bypass
SimpleFlow’s security, and always marking them would
cause the problems described above. We leave deciding which
files to set as fixed to the system administrator. Privileged
administrators can of course avoid the use of fixed labeling and
instead declassify persistent objects using setfattr.
Kernel threads vs. user-space processes: SimpleFlow

does not assign a security context to kernel threads, nor do we
taint kernel threads. We identify kernel threads as tasks whose
mm field is set to NULL. This is consistent with our threat model
which assumes attackers cannot corrupt the operating system
kernel.
Shared memory and mmap: In order to effectively mediate

shared memory, SimpleFlow accepts a minor performance
impact. The SimpleFlow kernel maintains a graph whose
nodes represent processes and whose undirected edges represent
connections between processes through shared memory
segments. A process might attach to many shared-memory
segments and a memory segment might be shared among
many processes. Starting from process pn, any other process
that is reachable by traversing this graph has the ability to
communicate with pn without invoking a system call.

SimpleFlow’s implementation of shm_shmat checks to see
if the shared memory segment being attached is tainted; if
it is, then the kernel taints the calling process. Shm_shmat

also checks if the calling process pm is tainted. If it is, then
the kernel traverses the graph to find any process directly
or transitively connected to pm, and the kernel taints these
processes too. The kernel also performs this search each time
a process is tainted. The kernel does not taint any trusted
processes that it finds in these searches.

The kernel also implements mmap_file to mediate the mmap

system call. If an untrusted process p1 maps a file for reading,
then the kernel will taint p1 if the file bears a taint. If an
untrusted and tainted process p2 maps without MAP_PRIVATE



a file f for writing, then the kernel will mark f as confidential.
If the process specified MAP_SHARED, then the kernel will
also search for other processes which have mapped f, and it
will taint those processes. Furthermore, each time a process
taints, the kernel finds each file the process has mapped using
PROT_WRITE and MAP_SHARED and transitively taints the other
processes which have mapped the same file.

Aside from these checks, shared memory accesses continue
unimpeded by SimpleFlow. In most cases, the only overhead
takes place when the kernel attaches a process to a shared-
memory segment. Shared-memory already incurs a setup
overhead, but this is amortized over the much faster memory
accesses which follow. The overhead due to tainting should be
even more rare.
Combining SELinux and SimpleFlow: An advantage of

SimpleFlow’s simple model is that it can be combined with
other security models while remaining manageable. We created
a research prototype which enforced both the SELinux and Sim-
pleFlow models on a Linux system. We did this by modifying
the SELinux LSM function implementations to in turn invoke
SimpleFlow’s implementations and by adding to SELinux’s
security structures the fields required by SimpleFlow.

We unified the /proc interface with a few tricks. Simple-
Flow’s setprocattr adds a ";1" or ";0" to the end of the
string produced by SELinux’s setprocattr to represent a
tainted and untainted process, respectively. The SimpleFlow
implementation of getprocattr strips these suffixes before pro-
viding the result to SELinux’s getprocattr unless the calling
process is ps. This way the human reading the output from ps

can view taint statuses, but existing utilities are not exposed to
the new suffixes. We hope to re-implement this using stackable
LSMs after porting SimpleFlow to a newer Linux kernel.
X11: Practical use of SimpleFlow requires trusting X11;

otherwise, tainting any X11 client would result in SimpleFlow
tainting every X11 client. The monolithic design of X11 makes
it difficult for an operating system to mediate access to the
windowing system. For example, if the operating system
permits an application to connect to the X11 server, then
the operating system is left unable to prevent the application
from using copy-and-paste to communicate with other X11
applications or from performing a screen capture. This problem
is well known in the literature surrounding X11. Kilpatrick et
al. [16] proposed adding calls in X11 out to SELinux to unify
X11 and SELinux security policies. Most recently, Garrot used
X11 to bypass the isolation provided by Ubuntu snap [12].

We propose adding checks to the X11 server which could
propagate the taint status of applications that use X11 to
communicate with other applications. Another possible solution
would be to follow the work of Wang et al. [31] to sanitize
the X11 protocol. Other programs, such as dbus, share similar
issues, and researchers have proposed solutions for them too
[20, §10.2]. We have left these considerations to future work.
Removable media: Neither the SimpleFlow kernel nor

SimpleFlow’s network filter claim to address removable media.
Such media is troublesome because once it bears confidential in-
formation it can be separated from the administrative controls of
the host computer and network. While introducing a new device
to the Unix filesystem using the mount system call is a privi-
leged operation, mechanisms exist to allow user-mounted filesys-
tems. For example, the mount command often bears the setuid
bit and allows users to mount filesystems marked with the user
option in /etc/fstab. Utilities such as polkit and udisks2

also allow users to mount disks, subject to system policies. We

External network

Network filter

SimpleFlow hosts

(1) Drops evil-bit traffic.

(2) Spoofs DNS response and
TCP three-way handshake for
evil-bit traffic.

(3) Logs activity to logging server.

Figure 2: The placement and function of the SimpleFlow
network filter

propose addressing removable media by either (1) dynamically
marking the folders the media bears as never or (2) requiring
removable media to be encrypted in such a way that only a
controlled computer can decrypt it (i.e., the system but not the
user has access to the decryption key). Either of these could be
implemented without further modification of SimpleFlow itself.

4.2 SimpleFlow network
The SimpleFlow LSM exists in the larger context of a computer
network. Here we describe how the design of this network compli-
ments SimpleFlow. SimpleFlow works best when paired with
a network that (1) routes only non-evil packets out of the Simple-
Flow subnet, (2) spoofs the response to any DNS request that is
marked with an evil bit, (3) spoofs to complete any TCP connec-
tion attempt that is marked with an evil bit, and (4) logs packets
that are marked with an evil bit for further analysis. Simple-
Flow labels packets in the IP header, thus allowing it mediate
any protocol which builds on IP, such as ICMP, TCP and UDP.

A computer running Linux serves as the gateway for our Sim-
pleFlow network. This design ensures that we can monitor,
filter, or spoof any packets between our SimpleFlow hosts and
the external network. Thus the gateway, which we call Simple-
Flow’s network filter, satisfies the four requirements above.

The network filter has two network interfaces, one on the
SimpleFlow subnet and one on the external network. We
configure the network filter to forward packets between these
interfaces while restricting its own outgoing connections to the
SimpleFlow network’s central log server. The network filter
itself does not accept any inbound connections to reduce its
own attack surface.

The network filter works with the SimpleFlow LSM to deny
attackers from exfiltrating confidential data in the following
way: First, it checks whether each packet bears the evil bit.
The network filter logs evil packets and alerts the logging server
of their presence. Simultaneously, the network filter determines
if the evil packet contains either a DNS request or a TCP SYN
segment. If either of these conditions hold, the filter responds
with either a spoofed DNS response or a spoofed TCP SYN
ACK. Lastly, the network filter drops evil packets from further
processing. If the packet is not marked with the evil bit, then
the network filter merely forwards the packet to the external
network. Evil packets passing through the network filter from
the external network to the SimpleFlow network are blocked
and logged, but not spoofed.



4.2.1 Network filtering
The network filter drops outgoing evil packets, as the process
which generated them had access to confidential data. While
researchers have found few evil packets on the Internet, an
attacker could purposefully send them to a SimpleFlow host
to cause a denial of service: the receiving SimpleFlow kernel
would taint a process which read them. Thus the network
filter also drops incoming evil packets. We do allow evil packets
among the SimpleFlow hosts on the local network to increase
the amount of information we collect. This seems a reasonable
tradeoff in practice because: (1) we assume the attacker does
not have a root account on our hosts, and thus he cannot
arbitrarily create evil-bit packets and (2) local network activity
will have both sides logged, so the actions of an attacker who
creates a denial of service are evident.

We set the default policy of the INPUT and OUTPUT chains
to DENY to drop all traffic in and out of the host itself with
the exception of whitelists, and we set the default policy of the
FORWARD chain to ACCEPT. Next, we configured the network
filter to drop all evil-bit packets [8]:

iptables -I FORWARD 1 -m u32 --u32 "3&0x80>>7=1" \

-j DROP.

This rule uses the match option (-m) to filter based on an
expression which detects evil bits. If the u32 expression
(3&0x80>>7=1) produces true, then the evil bit was set on the
packet and it is dropped. If it produces false, then the packet
moves to the next rule in the iptables chain.

The u32 expression is of the form:

<start> & <mask> = <range>.

This allows iptables to inspect a slice of the packet beginning at
byte offset start (3), apply the mask (0x80>>7) to the value
there, and determine if the result matches the range (1) of
values specified. Thus we inspect bytes three through six which
contain the IP flags where the evil bit exists. The mask 0x80

zeros out every bit except for the evil bit. The statement then
shifts the binary string to the right seven bits and compares it
to the value one. If the evil bit is set, then the string will equal
one and the u32 match will produce true. Otherwise, the u32

match produces false.
With evil-bit filtering in place, we next configured the

network filter to forward unfiltered packets to the external
network. We configured the kernel to forward packets by
adding net.ipv4.ip_forward = 1 to /etc/sysctl.conf.

Our final task was to allow the network filter to create
connections to the logging server. Heretofore the network filter
would drop all traffic other than that which is being forwarded
between the SimpleFlow network and the external network.

In order to allow outgoing connections from the network filter
to the logging server, we added a rule to the OUTPUT chain:

iptables -I OUTPUT -d <log server IP> -m conntrack \

--ctstate NEW,ESTABLISHED -j ACCEPT.

Another rule permits packets from the logging server on
established connections. This rule resembles the one above,
except it exists in the INPUT chain, matches source IP addresses
(-s), and accepts the connection states RELATED,ESTABLISHED.

In order to support IPv6 filtering, we configured ip6tables

and IPv6 forwarding. We configured the kernel to forward
IPv6 packets by adding net.ipv6.conf.all.forwarding = 1

to /etc/sysctl.conf. We then denied any IPv6 connections
to the network filter by setting the default policy of the INPUT

and OUTPUT chains to DENY. Next we added a rule that drops
evil labeled IPv6 packets:

ip6tables -I FORWARD 1 -m u32 --u32 \

"0&0xFFFFF=0xbad1e" -j DROP.

This rule, using the same matching methods explained earlier,
checks to see if the flow label of the packet equals the evil label,
and it drops matching packets. IPv6 forwarding also requires
allowing ICMPv6 and IPv6 multicast address connections, as
IPv6 uses neighbor discovery instead of ARP. We added a
rule in each chain which allows the ICMPv6 protocol as well
as a rule in the INPUT and OUTPUT chains which allow IPv6
multicast addresses. These rules follow the same format as the
logging connection rules, but they do not use the connection
state matching.

4.2.2 Spoofing
SimpleFlow’s network filter uses a spoofer to complete TCP
connections in order to gather information about the intentions
of tainted processes. Without this, the network filter would
block evil SYN packets, and tainted processes would never send
any application-layer requests. We are interested in recording
the insightful requests which the spoofer brings forth, such
as HTTP POSTs. The spoofer also responds to evil DNS
queries, which the network filter also blocks. The spoofer’s DNS
responses include an IP address outside of the SimpleFlow
subnet which ensures the tainted process will direct follow-on
traffic through the network filter.

We build our spoofer using Python and Scapy. Our
implementation makes use of Scapy’s sniff function, to which
it passes our filtering function and spoofing function as the
lfilter and prn parameters, respectively.

The lfilter parameter accepts a Boolean function which it
uses to check and filter packets. We pass in a function that filters
out all packets except for IPv4 or IPv6 packets that are tainted
with the evil bit or label, respectively. The function determines
if the packet bears the evil bit by inspecting it in a manner
similar to the firewall rules we described earlier. If the packet
gets through the filter it is passed to our spoofing function.

Our spoofing function completes TCP connections, provides
DNS responses, and logs evil packets. The function first
determines if the packet is a TCP SYN packet, a DNS request,
or just a regular evil packet. In the case of a TCP SYN packet,
the spoofer creates a new IP header (IPv4 or IPv6) by swapping
the source and destination addresses from the original packet.
Next, it creates a spoofed TCP SYN ACK header by swapping
the source and destination ports, setting the acknowledgment
number to the incoming sequence number plus one, and adding
a new random sequence number. Lastly, the function sets the
ACK flag of the segment and transmits the packet.

If the packet is a DNS request, then the function creates
the spoofed IP header in the same manner, and it spoofs the
UDP header by swapping the source and destination ports. The
function then creates a DNS response, setting the ID value to the
ID from the request and copying the question from the request.
The function sets the QR field to one to indicate a response.
Next, the function adds a DNS resource record containing
the requested name and an IP address that is outside of the
SimpleFlow subnet. Lastly, the function transmits the packet.

4.2.3 Logging
The network filter logs information about every response it
spoofs, and it stores evil-bit packets on disk for later inspection.
We also ran an instance of Snort which included a rule which



checks for the evil bit in IPv4 packets and our flow-label field
identifier in IPv6 packets. The network filter sends all of these
logs to a centralized log server.

5 Practical use and performance
We put SimpleFlow to practical use during the 2016
Cyber-Defense Exercise (CDX) and during our 2016 Cadet
Competitive Cyber Team (C3T) tryouts. We also measured the
performance of SimpleFlow using a series of microbenchmarks.
Cyber-Defense Exercise: The CDX is an annual compe-

tition sponsored by the US National Security Agency (NSA).
The exercise challenges a number of undergraduate institutions
to design, implement, and defend a computer network against
attack. The NSA builds the backbone exercise network,
provides the scoring infrastructure, and acts as the competition
referee. The NSA also fields a red cell which it tasks with trying
to compromise the confidentiality, integrity, and availability of
the competitors’ networks. Our network included 27 virtual
machines and four network devices.

The CDX requires each competing team to attach a number
of known-compromised computers to their network. The NSA
gives each school the task of sanitizing these computers before
activating them. These computers represent the users present on
each school’s network, and the red cell uses them to gain initial
access to the network during the competition. (One of the rules
which increases the likelihood of successful red-cell attacks re-
stricts teams from applying vendor-provided security updates to
these user workstations; this is why our SimpleFlow prototype
targeted Linux 3.10.) One aim of the red cell is to obtain and
exfiltrate token files which exist on each competitor’s computers;
one aim of each competitor is to protect these tokens. Another
publication further describes the CDX and our team [23].

We installed SimpleFlow on the CentOS user workstation,
and we integrated SimpleFlow into the network’s centralized
logging and monitoring system. Thus the SimpleFlow
host forwarded its system logs over a Transport Layer Secu-
rity (TLS)-protected channel to a server running Graylog [1].
SimpleFlow’s network filter also forwarded its logs to Graylog.

Due to the care with which our students sanitized the
CentOS user workstation before the competition, the host
running SimpleFlow was not compromised; thus we did not
observe any live evil-bit traffic during the exercise. Despite this,
we put SimpleFlow’s network filter to practical use during
the CDX. We identified in our DNS server logs a number of
DNS domains to which the red cell would exfiltrate data from
Windows hosts not protected by SimpleFlow. We configured
SimpleFlow’s network filter to always spoof these domains,
and thus we gathered much more information about the
exfiltration attempts than an outright blacklist of these DNS
lookups would have allowed. With SimpleFlow’s network
filter, we were able to observe application-layer requests related
to exfiltration attempts even while blocking those attempts.

We also used SimpleFlow extensively during the testing
which preceded the exercise. We found that undergraduate
students not previously familiar with SimpleFlow were
able to recreate the activity taking place on the Simple-
Flow host. For example, we ran commands such as:

wget --no-check-certificate -i confidential \

--quiet -O /dev/null,

where the file confidential bears a confidential mark and
contains a URL to load. By watching only the stream of logs
aggregated in Graylog, the students could determine that the

kernel had tainted wget due to its interaction with the file
confidential, the user running wget, wget’s process ID, and
that wget had produced evil packets. By correlating these
events with packet captures, the students could recognize the
DNS lookup and HTTP GET request produced by wget even
though SimpleFlow’s network filter forbid the evil packets
from leaving the SimpleFlow subnet. Indeed, our team wrote
a number of Snort and Graylog alerts which would notify us
if the monitoring system detected any evil packets.

Similar results followed from more sophisticated command
sequences which involved some amount of Inter-Process
Communication (IPC) before eventually producing a network
packet. This provided much better network awareness in
our students when compared to the previous year, when our
team relied primarily on packet captures and traditional logs
to recreate post-compromise activity. Figure 3a shows the
SimpleFlow log messages resulting from a Unix pipeline.
Cadet Competitive Cyber Team tryouts: Each year the

United States Military Academy hosts tryouts for its student-led
C3T. Aside from an interview and an administrative review,
the tryouts take the form of a Jeopardy-style capture-the-flag
competition which spans seven days. We wrote a challenge
based on SimpleFlow for this portion of the tryouts.

The SimpleFlow challenge consisted of a per-candidate
Unix account which was available using ssh and whose
home directory existed in a chroot jail. Inside each user’s
environment were the utilities bash, ls, cat, and scp as
well as a confidential file named flag. The object of the
challenge was to read the contents of flag; the presence of
scp allowed candidates to copy in programs which they wrote
and compiled elsewhere. The ordinary means of reading flag

(e.g., cat flag) would cause sshd to become tainted and thus
unresponsive until the user initiated another ssh session.

We expected candidates to solve this challenge by writing
a program to repeatedly fork a child process which reads flag

and signals an eight-bit portion of flag to is parent using an
exit code. Figure 4 depicts this technique in pseudocode, and
Figure 3b shows the logs SimpleFlow produces when exfil

runs while labeled as wait-trusted. Success indicates a basic
understanding of covert channels and the inner workings of
SimpleFlow.

Twenty C3T candidates, members, and alumni attempted
the SimpleFlow challenge. Two undergraduate C3T members
and three graduate alumni solved our challenge using the
technique we expected. As a result of this, we revised our
handling of the wait/exit channel as described in §4.1.3.
Some of our graduate alumni went on to demonstrate other
channels, which we also described in §4.1.3.
Performance: We used lmbench 2 [19] to measure the rela-

tive performance of our SimpleFlow kernel and a vanilla Linux
kernel of the same version. Our test computer was a 3.4 GHz
Intel Core i7-4770 Pro with four cores and 32 GB of memory.
We ran lmbench five times on each kernel, produced mean val-
ues for each kernel’s benchmark runs, and then calculated the
percent overhead cost of SimpleFlow. We also compared Sim-
pleFlow’s overhead to the that of LPM/Provmon. Since the
authors of LPM measured using lmbench on a different type of
computer, we compared only the overhead percentage. While an
imperfect comparison, the dual Xeon quad-core computer used in
the LPM paper is near enough to our i7 that our results illustrate
the trends involved. Table 2 summarizes the key measurements,
and the full results from lmbench appear in the Appendix.

All of the overheads we measured were less than or equal



tainting process running cat (pid: 2572, euid: 1000, uid: 1000) due to getattr interaction with /home/test/confidential
cat tainted; mark FIFO at pipe:[17902]
tainting process running wget (pid: 2575, euid: 1000, uid: 1000) due to read interaction with pipe:[17902]
wget tainted; mark socket at socket:[17906] [repeated a number of times]
setting evil bit on packet generated by wget (pid: 2575, euid: 1000, uid: 1000) [repeated a number of times]

(a) SimpleFlow logs resulting from running cat confidential | test_evil_bit wget -no-check-certificate -i - --quiet -O
/dev/null

tainting process running exfil (pid: 28353, euid: 1003, uid: 1003) due to read interaction with /home/test/confidential
untainted exfil waiting on tainted exfil (could transfer one-byte exit code)
tainting process running exfil (pid: 28354, euid: 1003, uid: 1003) due to read interaction with /home/test/confidential
untainted exfil waiting on tainted exfil (could transfer one-byte exit code)
tainting process running exfil (pid: 28355, euid: 1003, uid: 1003) due to read interaction with /home/test/confidential
untainted exfil waiting on tainted exfil (could transfer one-byte exit code)
tainting process running exfil (pid: 28356, euid: 1003, uid: 1003) due to read interaction with /home/test/confidential
untainted exfil waiting on tainted exfil (could transfer one-byte exit code)

(b) SimpleFlow logs resulting from a wait-trusted command receiving four bytes of confidential data through a wait/exit channel; each
byte incurs a cost of one fork, one wait, and one exit; an administrator could remove this channel and ensure SimpleFlow taints the
parent exfil process by labeling the exfil program as untrusted.

Figure 3: Examples of SimpleFlow’s logging; the file at /home/test/confidential bears the confidential label

for (int i = 0; i < 8; i++)

pid = fork ()

if (pid != 0)

waitpid(pid , &exitcode)

print(exitcode)

else

f = open (" confidential ")

seek(f, i)

c = getc(f)

exit(c)

Figure 4: Pseudocode for exfil, a program which commu-
nicates eight bytes of confidential data between two processes
using wait and exit

to those of LPM/Provmon. We posit that this is due to
SimpleFlow’s more focused provenance and the lower overhead
of maintaining a taint status on processes. Additionally, nearly
all of the overheads we measured are near to or better than
those measured in an early SELinux paper [17, Table 10]. The
exception is AF_UNIX, where the overhead comes from locking
the Unix socket in order to identify the taint status of its peer.
We note that we have not yet attempted any optimization of
the SimpleFlow code.

6 Conclusion
We set out to create a new access control system which would
support the study of näıve and malicious users while providing a
simple model for undergraduate experimentation. SimpleFlow
permits most operations requested of the kernel, yet it taints pro-
cesses which read data marked confidential, and it labels packets
generated by tainted processes with the RFC 3514 evil bit. This
allows user activity to continue unimpeded until a tainted pro-
cess tries to communicate using the network. The presence of
the evil bit makes it easy to block and record such traffic. In our
practical tests, undergraduate students were able to describe in
detail what was taking place during simulated malicious activity.

In addition to blocking evil-bit traffic, the SimpleFlow
network filter responds to tainted DNS requests and completes
three-way handshakes on behalf of what would otherwise be the
destination host. This reveals information about the intentions
of a user who reads a confidential file and later has his traffic
blocked. During the CDX we found this useful even when

Benchmark Base SimpleFlow
overhead

(%)

∆ overhead
vs. LPM

[4, Table 1]
null call 0.38 0.38 0.00 0.00
null I/O 0.44 0.60 33.75 −16.25
stat 1.02 1.04 1.96 −76.04
open/close 2.12 2.16 1.51 −40.49
mmap 3,245.60 3,250.20 0.14 −4.86
pipe 6.08 6.83 12.39 n/a
create 0KB 12.50 12.76 2.08 −34.92
delete 0KB 10.90 11.12 2.02 −36.98
create 10KB 26.10 27.10 3.83 −19.17
delete 10KB 14.14 14.54 2.83 −15.17
sig. inst. 0.44 0.44 0.00 0.00
sig. handle 1.03 1.04 0.58 −0.42
fork 60.68 61.74 1.75 −4.25
exec 260.40 262.80 0.92 −3.08
sh 1,145.00 1,182.00 3.23 −0.77
AF_UNIX 6.18 8.88 43.67 n/a
UDP 9.63 10.10 4.85 n/a
TCP 11.30 12.00 6.19 n/a
TCP connect 17.38 17.56 1.04 n/a
select TCP 2.80 2.65 −2.19 −2.19
prot. fault 0.46 0.47 1.59 −6.41
page fault 1.00 1.00 0.00 0.00

Table 2: Key lmbench 2 benchmarks, including average
vanilla and SimpleFlow kernel runtimes, SimpleFlow
percent overhead, and difference between LPM/Provmon and
SimpleFlow overhead

dealing with Windows hosts not protected by SimpleFlow, be-
cause SimpleFlow’s spoofing allowed us to extract information
about exfiltration attempts to blacklisted DNS domains.

SimpleFlow demonstrates it possible to build an information-
flow-based access control system on top of the LSM interface.
The kernel component of SimpleFlow is roughly 2,100 lines
of C code, and it exists almost entirely as a LSM. Aside
from some evil-bit-related constant definitions, we needed
only add a LSM call to pipe_read and write one new LSM
hook (security_file_lseek). SimpleFlow incurs a small
performance penalty which is similar to early versions of
SELinux and smaller than LPM/Provmon. SimpleFlow is
available at https://www.flyn.org/projects/SimpleFlow/.

Future work on SimpleFlow will include performance
optimizations, a deliberate code review, and a port to a newer



Linux kernel which supports LSM stacking. We also expect to
gather additional data about the practical use of SimpleFlow
in cyber-defense competitions. Finally, we hope to address X11
and similar programs as described in §4.1.5.

Acknowledgments
This material is based upon work supported by the US National
Science Foundation under grant CNS-1464121. We are grateful
for our teammates from the 2016 US Military Academy CDX
team, as they helped us put SimpleFlow to practical use.
We also thank the organizers of the CDX, the red cell, and
the competing teams. Finally, we thank the C3T candidates,
members, and alumni who tested SimpleFlow during their
2016 tryouts, especially those who first solved the SimpleFlow
challenge and provided practical demonstrations of unexpected
or covert channels: Matthew Shockley, Frederick Ulrich, Oliver
DiNallo, Daniel Ford, and Chris Maixner.

References
[1] Graylog log management system. https://www.graylog.org/

[Accessed Jan 20, 2016].

[2] The netfilter.org project. http://www.netfilter.org/ [Accessed May
27, 2016].

[3] perlsec. http://perldoc.perl.org/perlsec.html [Accessed Jul 4, 2016].

[4] Bates, A., Tian, D. J., Butler, K. R., and Moyer, T. Trustworthy
whole-system provenance for the Linux kernel. In Proc. of the
USENIX Security Symposium (Washington, D.C., Aug. 2015),
USENIX Association, pp. 319–334.

[5] Bellovin, S. RFC 3514: The security flag in the IPv4 header.
https://www.ietf.org/rfc/rfc3514.txt [Accessed Jan 20, 2016], Apr.
2003. Status: INFORMATIONAL.

[6] Bernstein, D. J. Some thoughts on security after ten years of qmail
1.0. In Proceedings of the 2007 ACM workshop on Computer
security architecture (New York, NY, USA, 2007), CSAW ’07,
ACM, pp. 1–10.

[7] Cisco Systems, Inc. Cisco IOS security command reference. https:
//www.cisco.com/c/en/us/td/docs/ios/12 2/security/command/
reference/fsecur r.html [Accessed Jul 26, 2016], Dec. 2013.

[8] Cox, B. I may be the only evil (bit) user on the Internet, Nov. 2015.
https://blog.benjojo.co.uk/post/evil-bit-RFC3514-real-world-usage
[Accessed Apr 25, 2016].

[9] Department of Defense. Trusted computer system evaluation
criteria. Tech. Rep. DOD 5200.28–STD, U. S. Department of
Defense, 1985.

[10] Dodd, M. N. CVS commit: src/sbin/ping ping.8 ping.c
src/share/man/man4 inet.4 ip.4 src/sys/netinet in.h in_pcb.h
ip.h ip_input.c ip_output.c ip_var.h src/usr.bin/netstat inet.c.
FreeBSD CVS commit message, Apr. 2003. https://lists.freebsd.org/
pipermail/cvs-all/2003-April/001098.html [Accessed Apr 25, 2016].

[11] Dodd, M. N. CVS commit: src/sbin/ping ping.8 ping.c
src/share/man/man4 inet.4 ip.4 src/sys/netinet in.h in_pcb.h
ip.h ip_input.c ip_output.c ip_var.h src/usr.bin/netstat inet.c.
FreeBSD CVS commit message, Apr. 2003. https://lists.freebsd.org/
pipermail/cvs-all/2003-April/001295.html [Accessed Apr 25, 2016].

[12] Garrett, M. Circumventing Ubuntu snap confinement, 2016.
http://mjg59.dreamwidth.org/42320.html [Accessed Apr 28, 2016].

[13] Hayden, M. Stop disabling SELinux, 2013. http:
//stopdisablingselinux.com/ [Accessed Apr 25, 2016].

[14] Johns, M. S., Atkinson, R., and Thomas, G. RFC 5570:
Common architecture label IPv6 security option (CALIPSO).
https://tools.ietf.org/html/rfc5570 [Accessed Jul 26, 2016], July
2009. Status: INFORMATIONAL.

[15] Kent, S. RFC 1108: U.S. Department of Defense security options
for the Internet Protocol. https://tools.ietf.org/html/rfc1108
[Accessed Jul 26, 2016], Nov. 1991. Status: INFORMATIONAL.

[16] Kilpatrick, D., Salamon, W., and Vance, C. Securing the X
Window System with SELinux, 2003.

[17] Loscocco, P., and Smalley, S. Integrating flexible support for secu-
rity policies into the Linux operating system. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Conference
(Berkeley, CA, June 2001), The USENIX Association, pp. 29–42.

[18] McIlroy, M. D., and Reeds, J. A. Multilevel security in the UNIX
tradition. Software–Practice and Experience 22 (1992), 673–694.

[19] McVoy, L., and Staelin, C. lmbench: Portable tools for per-
formance analysis. In Proc. of the USENIX Annual Technical
Conference (pub-USENIX:adr, 1996), USENIX, Ed., USENIX
Conference Proceedings 1996, USENIX, pp. 279–294.

[20] Morris, J. Have you driven an SELinux lately? In Proceedings of
the Linux Symposium (July 2008), vol. 2 of OLS ’08, pp. 101–114.

[21] Myers, A. C., and Liskov, B. Protecting privacy using the decen-
tralized label model. Software Engineering and Methodology 9, 4
(2000), 410–442.

[22] Nakamura, Y., Sameshima, Y., and Tabata, T. SEEdit: SELinux
security policy configuration system with higher level language. In
Proc. of the Conference on Large Installation System Admin-
istration (LISA) (Berkeley, CA, USA, 2009), LISA’09, USENIX
Association, pp. 8–8.

[23] Petullo, W. M., Moses, K., Klimkowski, B., Hand, R., and Olson,
K. The use of cyber-defense exercises in undergraduate computing
education. In Proceedings of the 2016 USENIX Workshop on
Advances in Security Education (Washington, DC, USA, Aug.
2016), ASE ’16, USENIX Association.

[24] Pohly, D. J., McLaughlin, S., McDaniel, P., and Butler, K. Hi-Fi:
Collecting high-fidelity whole-system provenance. In Proceedings
of the 28th Annual Computer Security Applications Conference
(New York, NY, USA, 2012), ACSAC ’12, ACM, pp. 259–268.

[25] Postel, J. RFC 791: Internet Protocol, Sept. 1981. Obsoletes
RFC076. See also STD0005. Status: STANDARD.

[26] Provos, N., Friedl, M., and Honeyman, P. Preventing privilege
escalation. In Proc. of the USENIX Security Symposium (Berkeley,
CA, USA, Aug. 2003), USENIX Association, pp. 231–242.

[27] Red Hat Bugzilla. Patch (and other utilities) act oddly with
respect to custom Linux LSM (i.e., replacing SELinux), 2016.
https://bugzilla.redhat.com/show bug.cgi?id=1312575 [Accessed
Apr 26, 2016].

[28] Saltzer, J. H. Protection and the control of information sharing
in Multics. Communications of the ACM (CACM) 17, 7 (July
1974), 388–402.

[29] Smalley, S., Vance, C., and Salamon, W. Implementing SELinux
as a Linux security module. Report #01-043, NAI Labs, Dec. 2001.
Revised April 2002.

[30] Stock, B., Lekies, S., Mueller, T., Spiegel, P., and Johns, M.
Precise client-side protection against DOM-based cross-site scripting.
In Proc. of the USENIX Security Symposium (San Diego, CA,
Aug. 2014), USENIX Association, pp. 655–670.

[31] Wang, L. JailX: Protecting users from X applications. PhD thesis,
University of Illinois at Chicago, 2006.

[32] Weissman, C. Security controls in the ADEPT-50 time-sharing
system. Proc. FJCC, AFIPS 35 (1969).

[33] Wright, C., Cowan, C., Smalley, S., Morris, J., and Kroah-
Hartman, G. Linux Security Modules: General security support for
the Linux Kernel. In Proc. of the USENIX Security Symposium
(San Francisco, Ca., 2002).

[34] Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E. Panorama:
Capturing system-wide information flow for malware detection
and analysis. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (New York, NY, USA,
2007), CCS ’07, ACM, pp. 116–127.

[35] Zeldovich, N., Boyd-Wickizer, S., Kohler, E., and Mazières, D.
Making information flow explicit in HiStar. In Symposium on
Operating System Design and Implementation (OSDI) (Seattle,
Washington, Nov. 2006).



APPENDIX: lmbench results with vanilla and SimpleFlow kernel

P
r
o
c
e
s
s
o
r
,
P
r
o
c
e
s
s
e
s
-
t
i
m
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S

M
h
z
n
u
l
l
n
u
l
l

o
p
e
n
s
e
l
c
t
s
i
g

s
i
g

f
o
r
k
e
x
e
c
s
h

c
a
l
l

I
/
O
s
t
a
t
c
l
o
s
T
C
P

i
n
s
t
h
n
d
l
p
r
o
c
p
r
o
c
p
r
o
c

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
4
0
0
0
.
3
8
0
.
4
5
1
.
0
2
2
.
1
1
2
.
6
2
2
0
.
4
4
1
.
0
6
6
0
.
7
2
5
9
.
1
1
1
1

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
4
0
0
0
.
3
8
0
.
4
4
1
.
0
2
2
.
1
2
2
.
8
1
8
0
.
4
4
1
.
0
3
6
2
.
4
2
6
0
.
1
1
5
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
4
0
0
0
.
3
8
0
.
4
4
1
.
0
2
2
.
1
4
2
.
7
2
0
0
.
4
4
1
.
0
3
6
0
.
1
2
6
2
.
1
1
4
5

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
4
0
0
0
.
3
8
0
.
4
4
1
.
0
3
2
.
1
2
2
.
6
7
0
0
.
4
4
1
.
0
3
6
0
.
0
2
6
0
.
1
1
6
3

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
4
0
0
0
.
3
7
0
.
4
4
1
.
0
2
2
.
1
3
2
.
7
1
5
0
.
4
5
1
.
0
2
6
0
.
2
2
6
1
.
1
1
5
6

C
o
n
t
e
x
t
s
w
i
t
c
h
i
n
g
-
t
i
m
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S
2
p
/
0
K
2
p
/
1
6
K
2
p
/
6
4
K
8
p
/
1
6
K
8
p
/
6
4
K
1
6
p
/
1
6
K
1
6
p
/
6
4
K

c
t
x
s
w

c
t
x
s
w

c
t
x
s
w
c
t
x
s
w

c
t
x
s
w

c
t
x
s
w

c
t
x
s
w

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
0
0
2
.
0
0
0
0
3
.
1
8
0
0
2
.
4
2
0
0
2
.
7
0
0
0
2
.
6
8
0
0
0
3
.
1
0
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
2
0
2
.
0
1
0
0
2
.
1
7
0
0
2
.
3
4
0
0
2
.
8
4
0
0
2
.
5
2
0
0
0
3
.
1
0
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
2
0
2
.
0
1
0
0
3
.
1
6
0
0
2
.
4
3
0
0
2
.
8
9
0
0
2
.
6
5
0
0
0
3
.
2
2
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
9
0
1
.
9
8
0
0
2
.
1
8
0
0
2
.
3
3
0
0
2
.
7
0
0
0
2
.
5
9
0
0
0
3
.
1
1
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
6
0
2
.
0
4
0
0
3
.
0
9
0
0
2
.
5
0
0
0
2
.
8
7
0
0
2
.
7
3
0
0
0
3
.
1
1
0
0
0

*
L
o
c
a
l
*
C
o
m
m
u
n
i
c
a
t
i
o
n
l
a
t
e
n
c
i
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S
2
p
/
0
K

P
i
p
e
A
F

U
D
P

R
P
C
/

T
C
P

R
P
C
/
T
C
P

c
t
x
s
w

U
N
I
X

U
D
P

T
C
P
c
o
n
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
0
0
6
.
1
2
1
6
.
1
6
9
.
5
4
5

1
1
.
3

1
7
.
6

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
2
0
6
.
1
3
3
5
.
9
5
9
.
5
8
7

1
1
.
3

1
7
.
3

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
2
0
5
.
9
8
7
6
.
3
2
9
.
7
4
3

1
1
.
3

1
7
.
2

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
9
0
6
.
0
8
6
6
.
1
5
9
.
6
0
5

1
1
.
3

1
7
.
3

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
1
.
9
6
0
6
.
0
6
1
6
.
3
1
9
.
6
8
4

1
1
.
3

1
7
.
5

F
i
l
e
&
V
M
s
y
s
t
e
m
l
a
t
e
n
c
i
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S

0
K
F
i
l
e

1
0
K
F
i
l
e

M
m
a
p

P
r
o
t

P
a
g
e

C
r
e
a
t
e
D
e
l
e
t
e
C
r
e
a
t
e
D
e
l
e
t
e

L
a
t
e
n
c
y
F
a
u
l
t

F
a
u
l
t

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V

1
4
.
5

1
0
.
9

2
9
.
0

1
4
.
2

3
2
0
5
.
0
0
.
4
6
5

1
.
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V

1
2
.
0

1
0
.
9

2
5
.
0

1
4
.
1

3
2
5
6
.
0
0
.
4
6
1

1
.
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V

1
2
.
1

1
0
.
9

2
5
.
1

1
4
.
1

3
2
6
6
.
0
0
.
4
6
3

1
.
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V

1
1
.
9

1
0
.
9

2
6
.
3

1
4
.
1

3
2
5
3
.
0
0
.
4
6
5

1
.
0
0
0

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V

1
2
.
0

1
0
.
9

2
5
.
1

1
4
.
2

3
2
4
8
.
0
0
.
4
6
6

1
.
0
0
0

*
L
o
c
a
l
*
C
o
m
m
u
n
i
c
a
t
i
o
n
b
a
n
d
w
i
d
t
h
s
i
n
M
B
/
s
-
b
i
g
g
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S

P
i
p
e
A
F

T
C
P

F
i
l
e

M
m
a
p

B
c
o
p
y

B
c
o
p
y

M
e
m

M
e
m

U
N
I
X

r
e
r
e
a
d
r
e
r
e
a
d
(
l
i
b
c
)
(
h
a
n
d
)
r
e
a
d
w
r
i
t
e

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
2
8
5
1
1
.
K
6
8
5
9
6
3
4
7
.
7

1
3
.
8
K
9
1
5
9
.
1
6
6
7
1
.
2
1
3
.
K
9
7
4
6
.

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
5
3
3
1
0
.
K
6
5
9
8
6
3
3
6
.
6

1
3
.
8
K
9
1
3
1
.
7
6
6
6
7
.
9
1
3
.
K
9
8
1
0
.

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
5
2
8
1
1
.
K
1
0
.
K
6
3
5
0
.
4

1
3
.
8
K
9
1
0
1
.
7
6
6
6
3
.
7
1
3
.
K
9
8
3
6
.

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
3
2
0
1
0
.
K
6
6
6
6
6
3
5
4
.
6

1
3
.
8
K
9
1
5
2
.
9
6
6
7
8
.
8
1
3
.
K
9
9
1
8
.

V
a
n
i
l
l
a

L
i
n
u
x
3
.
1
0
.
0
V
3
6
1
5
1
0
.
K
1
0
.
K
6
3
4
1
.
9

1
3
.
7
K
9
1
6
1
.
9
6
6
6
7
.
6
1
3
.
K
9
8
8
8
.

P
r
o
c
e
s
s
o
r
,
P
r
o
c
e
s
s
e
s
-
t
i
m
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S

M
h
z
n
u
l
l
n
u
l
l

o
p
e
n
s
e
l
c
t
s
i
g

s
i
g

f
o
r
k
e
x
e
c
s
h

c
a
l
l

I
/
O
s
t
a
t
c
l
o
s
T
C
P

i
n
s
t
h
n
d
l
p
r
o
c
p
r
o
c
p
r
o
c

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
4
0
0
0
.
3
7
0
.
6
0
1
.
0
4
2
.
1
4
2
.
6
2
2
0
.
4
5
1
.
0
4
6
0
.
5
2
7
0
.
1
1
6
5

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
4
0
0
0
.
3
8
0
.
6
0
1
.
0
4
2
.
1
8
2
.
6
2
2
0
.
4
4
1
.
0
4
6
2
.
4
2
6
9
.
1
1
6
7

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
4
0
0
0
.
3
8
0
.
6
0
1
.
0
4
2
.
1
5
2
.
7
1
3
0
.
4
4
1
.
0
4
6
2
.
5
2
5
1
.
1
2
0
6

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
4
0
0
0
.
3
8
0
.
6
0
1
.
0
5
2
.
1
7
2
.
6
6
8
0
.
4
5
1
.
0
4
6
2
.
3
2
5
2
.
1
1
9
3

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
4
0
0
0
.
3
8
0
.
6
0
1
.
0
4
2
.
1
4
2
.
6
2
3
0
.
4
4
1
.
0
4
6
1
.
0
2
7
2
.
1
1
7
9

C
o
n
t
e
x
t
s
w
i
t
c
h
i
n
g
-
t
i
m
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S
2
p
/
0
K
2
p
/
1
6
K
2
p
/
6
4
K
8
p
/
1
6
K
8
p
/
6
4
K
1
6
p
/
1
6
K
1
6
p
/
6
4
K

c
t
x
s
w

c
t
x
s
w

c
t
x
s
w
c
t
x
s
w

c
t
x
s
w

c
t
x
s
w

c
t
x
s
w

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
9
0
0
1
.
9
9
0
0
2
.
2
2
0
0
2
.
2
6
0
0
2
.
6
6
0
0
2
.
4
6
0
0
0
3
.
0
7
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
8
2
0
2
.
9
6
0
0
3
.
3
0
0
0
2
.
4
8
0
0
2
.
7
5
0
0
2
.
6
5
0
0
0
3
.
2
0
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
8
2
0
1
.
9
3
0
0
2
.
2
4
0
0
2
.
2
7
0
0
3
.
0
1
0
0
2
.
6
6
0
0
0
3
.
1
5
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
2
.
9
0
0
1
.
9
7
0
0
2
.
2
0
0
0
2
.
4
6
0
0
2
.
7
1
0
0
2
.
5
0
0
0
0
3
.
0
5
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
8
3
0
1
.
9
3
0
0
2
.
2
0
0
0
2
.
4
7
0
0
2
.
7
0
0
0
2
.
7
0
0
0
0
3
.
2
1
0
0
0

*
L
o
c
a
l
*
C
o
m
m
u
n
i
c
a
t
i
o
n
l
a
t
e
n
c
i
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S
2
p
/
0
K

P
i
p
e
A
F

U
D
P

R
P
C
/

T
C
P

R
P
C
/
T
C
P

c
t
x
s
w

U
N
I
X

U
D
P

T
C
P
c
o
n
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
9
0
0
6
.
8
5
4
9
.
0
4

1
0
.
1

1
3
.
2

1
2
.
0

1
6
.
3
1
7
.
5

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
8
2
0
6
.
7
2
4
9
.
0
8

1
0
.
1

1
3
.
3

1
2
.
1

1
6
.
4
1
7
.
8

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
8
2
0
6
.
8
6
9
8
.
7
2

1
0
.
1

1
3
.
2

1
2
.
0

1
6
.
3
1
7
.
7

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
2
.
9
0
0
6
.
9
6
4
8
.
6
5

1
0
.
0

1
3
.
3

1
2
.
0

1
6
.
3
1
7
.
4

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
1
.
8
3
0
6
.
7
4
1
8
.
8
9

1
0
.
2

1
3
.
3

1
1
.
9

1
6
.
3
1
7
.
4

F
i
l
e
&
V
M
s
y
s
t
e
m
l
a
t
e
n
c
i
e
s
i
n
m
i
c
r
o
s
e
c
o
n
d
s
-
s
m
a
l
l
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S

0
K
F
i
l
e

1
0
K
F
i
l
e

M
m
a
p

P
r
o
t

P
a
g
e

C
r
e
a
t
e
D
e
l
e
t
e
C
r
e
a
t
e
D
e
l
e
t
e

L
a
t
e
n
c
y
F
a
u
l
t

F
a
u
l
t

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S

1
3
.
7

1
1
.
1

2
8
.
1

1
4
.
6

3
2
4
0
.
0
0
.
4
7
2

1
.
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S

1
2
.
3

1
1
.
1

2
6
.
4

1
4
.
5

3
2
4
0
.
0
0
.
4
7
1

1
.
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S

1
2
.
8

1
1
.
2

2
7
.
9

1
4
.
6

3
2
5
6
.
0
0
.
4
7
2

1
.
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S

1
2
.
6

1
1
.
1

2
6
.
4

1
4
.
5

3
2
7
1
.
0
0
.
4
7
3

1
.
0
0
0

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S

1
2
.
4

1
1
.
1

2
6
.
7

1
4
.
5

3
2
4
4
.
0
0
.
4
6
9

1
.
0
0
0

*
L
o
c
a
l
*
C
o
m
m
u
n
i
c
a
t
i
o
n
b
a
n
d
w
i
d
t
h
s
i
n
M
B
/
s
-
b
i
g
g
e
r
i
s
b
e
t
t
e
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
o
s
t

O
S

P
i
p
e
A
F

T
C
P

F
i
l
e

M
m
a
p

B
c
o
p
y

B
c
o
p
y

M
e
m

M
e
m

U
N
I
X

r
e
r
e
a
d
r
e
r
e
a
d
(
l
i
b
c
)
(
h
a
n
d
)
r
e
a
d
w
r
i
t
e

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
5
8
5
9
7
5
7
6
2
7
5
6
2
5
0
.
8

1
3
.
8
K
9
1
7
7
.
3
6
6
5
8
.
0
1
3
.
K
9
8
8
1
.

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
2
9
6
2
9
6
8
7
6
2
8
1
6
2
5
0
.
1

1
3
.
8
K
9
2
0
8
.
5
6
6
4
1
.
1
1
3
.
K
9
7
2
1
.

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
0
4
5
9
7
6
9
6
2
7
6
6
2
4
3
.
6

1
3
.
8
K
9
1
1
8
.
4
6
6
5
1
.
2
1
3
.
K
9
8
6
2
.

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
0
5
8
9
6
4
7
6
2
7
2
6
2
5
0
.
8

1
3
.
8
K
9
1
5
3
.
2
6
6
4
8
.
1
1
3
.
K
9
8
7
6
.

S
i
m
p
l
e
F
l
o
L
i
n
u
x
3
.
1
0
.
0
S
3
0
7
3
9
8
8
0
6
2
1
9
6
2
4
2
.
0

1
3
.
8
K
9
1
3
7
.
3
6
6
4
4
.
9
1
3
.
K
9
8
3
6
.


