Using VisorFlow to Control Information Flow without
Modifying the Operating System Kernel or its Userspace

Matt Shockley
United States Military Academy
West Point, New York, USA
matthew.j.shockley.mil@mail. mil

Mitch DeRidder
United States Military Academy
West Point, New York, USA
mitchell.h.deridder.mil@mail.mil

ABSTRACT

VisorFLow aims to monitor the flow of information between pro-
cesses without requiring modifications to the operating system
kernel or its userspace. VisorRFLOw runs in a privileged Xen do-
main and monitors the system calls executing in other domains
running either Linux or Windows. VisorRFLOw uses its observa-
tions to prevent confidential information from leaving a local net-
work. We describe the design and implementation of VisorFLow,
describe how we used VisorRFLow to confine naive users and mali-
cious insiders during the 2017 Cyber-Defense Exercise, and provide
performance measurements. We have released VisorRFLow and its
companion library, libguestrace, as open-source software.

ACM Reference format:

Matt Shockley, Chris Maixner, Ryan Johnson, Mitch DeRidder, and W.
Michael Petullo. 2017. Using VisorFlow to Control Information Flow without
Modifying the Operating System Kernel or its Userspace. In Proceedings of
MIST’17, October 30, 2017, Dallas, TX, USA., , 12 pages.
https://doi.org/10.1145/3139923.3139924

1 INTRODUCTION

Whole-system access controls are most often tied to an operating
system kernel. For example, UNIx kernels enforce traditional UNIx
access controls; Windows kernels mediate system-object accesses;
and Security-Enhanced Linux (SELinux) [25], AppArmor, Smack
[34], and StmpLEFLOW [19] use the Linux Security Module inter-
face to provide various access-control models as add-on kernel
features. Yet developing such systems expose programmers to the
challenges of kernel development. Kernels remain an unforgiving
programming environment: many kernels routinely change their
internal interfaces across versions, and some kernels—most notably
Windows—are distributed without source code. These factors im-
pede the creation of access controls built for specific use cases. It is
thus desirable to efficiently enforce additional access controls from
outside of the kernel while maintaining nearly complete mediation.

This paper is authored by an employee(s) of the United States Government and is in
the public domain. Non-exclusive copying or redistribution is allowed, provided that
the article citation is given and the authors and agency are clearly identified as its
source.

MIST’17, , October 30, 2017, Dallas, TX, USA.

2017. ACM ISBN 978-1-4503-5177-5/17/10...$15.00
https://doi.org/10.1145/3139923.3139924

Chris Maixner
United States Military Academy
West Point, New York, USA
christopher.].maixner2.mil@mail.mil

Ryan Johnson
United States Army Cyber School
Fort Gordon, Georgia, USA
ryan.v.johnson.mil@mail. mil

W. Michael Petullo
United States Military Academy
West Point, New York, USA
mike@flyn.org

VisorFLow builds its access controls on virtual-machine intro-
spection. Instead of modifying a kernel, VisorFLow runs within a
privileged Xen [6] domain, and from this perspective it mediates the
activities of other guest operating systems. VisorRFLOW observes the
stream of system calls and returns on a guest, and it occasionally
manipulates the control flow of the guest kernel to acheive its ends.
Our research prototype mediates both Linux and Windows 7.

In its current form, VisorRFLOW provides a simple information-
flow model. This model closely follows StmpLEFLOW [19], which set
out to better restrict naive users and malicious insiders. VIsoRFLow
allows the system administrator to mark system objects as confiden-
tial, and VisorFLow taints processes which read from confidential
objects. VisorRFLow ultimately marks the network packets which a
tainted process produces so that network devices can control the
flow of confidential data within a network. SIMPLEFLOW mediates
only Linux, whereas VisorFLow could be extended to mediate any
common operating system.

We couple VisorFLow with StMpLEFLOW’s network filter. The
network filter prevents confidential packets from leaving the local
network, but it spoofs DNS and TCP responses to fool an adversary
into revealing information about his attack. Whereas mere block-
ing whould prevent a DNS lookup from proceeding, the spoofing
performed by the network filter fools a malicious program into
completing its DNS lookup, TCP three-way handshake, and initial
application-layer request. VisorFLow logs each of these, and this
provides intelligence to defend against subsequent attacks as well
as evidence for prosecution.

VisorFLow could support other access-contol models. Indeed, we
built VisorRFLow around a companion library, libguestrace, which
gives programmers access to our system-call tracing techniques.
VisorFLOWw requires neither source-code modifications of the guest
kernel nor software agents running on the guest.

After describing related work in §2, this paper describes the
threat model which motivated VisorFLow (§3), the design and
implementation of VisorFLow (§4), and an example of the use
of VisorFLOW in practice along with some performance measure-
ments (§5). We used VisorFLow during the 2017 Cyber-Defense
Exercise (CDX), a competition which challenges undergraduate
teams to defend their networks against penetration testers from
the US National Security Agency (NSA). We have released both
VisorFLow and libguestrace as open-source software.

https://doi.org/10.1145/3139923.3139924
https://doi.org/10.1145/3139923.3139924

2 RELATED WORK

VisorFLow tracks the flow of information through a system, and
it labels network messages which might contain confidential data.
Hedin and Sabelfeld provide an overview of information flow [16],
and there exist a number of projects built around the concepts of
information flow. Such projects include IX [26] and HiStar [41],
which apply information flow to operating systems; Perl [3] and Jif
[28], which apply information flow to programming languages; and
Chromium [37], which applies information flow to protect against
cross-site scripting within an application.

It is possible to retrofit information flow monitoring onto a sys-
tem without built-in support through the use of a simulator. A
simulator can monitor the low-level read and write primitives from
which information flow follows. Panorama’s processor emulator
infers the information-flow which results from each processor in-
struction [40], and SimOS simulates hardware to allow the study
of complex systems [31]. Both can work with closed-source operat-
ing systems which cannot be modified, but hardware simulation
decreases runtime performance by a factor of 10-20.

Garfinkel and Rosenblum proposed the use of Virtual Machine
Introspection (VMI) to aid in intrusion detection [14]. They imple-
mented a prototype, Livewire, which required a modified version of
VMware Workstation. Livewire supported policy modules which im-
plemented various strategies for detecting malicious behavior. Their
work included modules able to detect tampered system utilities,
tampered user-space instructions in memory, malicious signatures
in memory, and the creation of raw sockets. Other modules pre-
vented setting a network interface’s promiscuous mode or writing
to certain locations in kernel memory.

Livewire pauses the virtual machine which it monitors in order
to analyze an observed event [14, §5.2]. Other systems provide a
stream of events to an analysis engine without delaying the opera-
tion of the monitored system [17]. VisorRFLow follows the former
technique in order to prevent race conditions.

Deng et al. provide a survey of approaches to the problem of
monitoring software using debugging, emulation, and virtualization
[11, §2]. Their own work, SPIDER, introduced the idea of an invisible
breakpoint [11, §4.1-4.2]. SPIDER runs on KVM [21], and it splits
the memory of a monitored guest into code and data views to
keep its breakpoints invisible from the perspective of the guest.
In SPIDER, the code view of a page contains a breakpoint and is
set execute-only, and the data view of a page contains the original
code and is set read-only. Reading the code view transfers control
to SPIDER, allowing SPIDER to temporarily revert the data view
before the read completes.

DRAKVUF [23, §3.2.1] adapts invisible breakpoints to the Xen
[6] hypervisor. Lengyel provides a nice summary of Xen’s altp2m
facility [22]; this feature allows for safe, invisible breakpoints which
do not impede progress on the guest’s other processor cores.

We make use of a variant of invisible breakpoints in Visor-
FLow. SPIDER and DRAKVUF aim to analyze kernel and userspace
software at runtime in a way which defeats debugging and instru-
mentation countermeasures. VIsorRFLow’s goal is to instead control
software as it runs. Unlike DRAKVUF, VisorFLow makes little at-
tempt to monitor the integrity of kernel space, although it could be
extended to do so.

Garfinkel drew from his work on Janus [15] to describe common
pitfalls surrounding access controls based on system-call inter-
position [13]. Our motivation of avoiding deep introspection led
to the requirement of considering in our design a number of the
pitfalls Garfinkel described. In exchange, we were able to target
the hardware-software interface which rarely changes rather than
kernel-internal data structures which often do. We describe some
of the details of this towards the end of §4.2.

VisorFLow makes use of RFC 3514 [7], which defines an evil flag
in the IPv4 header using a previously unused bit. Bellovin intended
this RFC as an April Fools’ joke, but we selected it for our research
prototype due to its simplicity. Other options include RFC 1108 [20]
and RFC 5570 [18], which describe schemes for labeling the security
classification of IPv4 and IPv6 packets, respectively. Commercial
products exist which have the ability to filter on these fields [9, see
IP Security Options].

VisorFLow uses the Linux kernel’s Netfilter Queue (NFQUEUE)
interface [2] to process packets in userspace. NFQUEUE allows
for firewall rules which delegate matched packets to user-space
processes for filtering or mangling. A special socket shared with
the kernel allows the process to read queued packets, write man-
gled packets, and write accept/reject codes. The libnetfilter_queue
library makes it easier to interact with this interface.

Tracing Windows system calls requires understanding the oper-
ating system’s internal structure without the benefit of its source
code. Early efforts to document the details of system calls on Win-
dows include work by Russinovich and Cogswell [32] and Solar
Designer [12]. A number of books now describe the internals of
Windows. Windows Internals, Part 1by Russinovich, et al. provides a
good introduction, and it aided in our understanding of Windows’s
notion of previous mode. Previous mode reveals whether a kernel
procedure executed as a consequence of a system call [33, Ch. 3]. The
Art of Memory Forensics: Detecting Malware and Threats in Windows,
Linux, and Mac Memory was particularly useful for understanding
how Windows’s system calls provide access to its networking fa-
cilities [24, Ch. 11]. Chappell’s online references provided useful
documentation of Windows data structures, including the Thread
Environment Block [8]. Reviewing the source code provided by a
number of software projects was helpful too, including ReactOS,
a Windows clone [4]; Rekall, a memory-forensics framework [10];
and Dr. Memory, a suite of memory-analysis tools [1].

3 THREAT MODEL

We assume an attacker with user-level access to the guest operating
system monitored by VisorFLow. Such users can run arbitrary
programs or even write and run new programs. Our aim is to
prevent such users from exfiltrating confidential data using network
messages beyond the local network. Such users include malicious
insiders and unauthorized users who manage to get access through
anetwork attack. We also include naive users here. These users will
not willingly share secrets, but they might be fooled into running a
program which does. We aim to prevent unprivileged users from
detecting for sure that VisorFLOW is running.

VisorFLow also mediates privileged processes running on the
monitored guest. However, privileged users can detect that VIsor-
FrLow is running. Later, we describe that ViIsorRFLow manipulates

e |l e |

(6] 9 . 6 , 0

Net. ' Win. ' Linux
Engine | Engine | Engine
2~ :

firewalld F-F-|--'"----- i--t@
® VisorFLow

o| | [Console] 6 @

4~ |

|—> NetFii:er l
2] ®

Dom0 ©

o] | o |

Hypervisor

Figure 1: High-level VisorRFLow architecture

the return address found on kernel-thread stacks. A privileged
user could observe this and conclude that VisorRFLow was running.
SELinux and other mandatory access control systems can prevent
these observations.

Privileged and unprivileged users alike might exploit a vulnera-
bility in the monitored kernel to open up a communication channel
outside of the system calls monitored by VisorFLow. Privileged
users could also use standard utilities to add code to the kernel
with the same result. Thus VisorFLow trusts the kernel. Visor-
Frow could be extended to use DRAKVUF-like techniques to detect
integrity problems in the kernel, and mandatory access control
systems can prevent adding code to a running kernel.

While VisorFLow remediates a number of covert and surprising
channels, other channels certainly exist in feature-rich kernels such
as Linux and Windows. Our goal is to render covert channels low-
bandwidth and reliant on a detectable amount of system calls.

VisorFLow does not claim to prevent attacks on the Xen hyper-
visor or hardware; Sgandurra and Lupu summarized the attacks on
these layers [36]. Such attacks include cross-guest side channels
and attacks on the hypervisor. VisorRFLow also does nothing to
prevent exfiltration that is not network-based, such as that which
might occur when employees memorize secrets. We leave these pro-
tections to other work, including non-technical procedures, verified
hardware, verified software, and measured and verified booting.

4 DESIGN AND IMPLEMENTATION

VisorFLOW uses virtual-machine introspection to observe system
calls, infer information flow, and control confidential data. Under
VisorFlow, the system administrator designates some filesystem
objects as confidential and some programs as trusted. Any process
not loaded from a trusted program will become tainted upon read-
ing a confidential object. The kernel transfers this taint status from
process to process as a result of inter-process communication (e.g.,
an untainted process reads from a tainted process over a pipe). If
a tainted process writes to the network, then the kernel sets the
packet’s RFC 3514 evil bit. This bit permits a variety of filtering or
spoofing strategies which might help determine the human inten-
tions involved. Figure 1 depicts the components which make up
VisorFLow, including:

O the Xen hypervisor,

® Linux running in the Dom0 domain,

® one or more DomU domains running Linux or Windows,
® the VisorFLOW security monitor,

® one or more processes running within each DomU,

® firewalld,

@ the VisorFLow network engine,

O the VisorRFLow Windows authorization engine, and

©® the VisorFLow Linux authorization engine.

Figure 2 goes on to describe how VisorFLow instruments DomU
system calls, and Figure 4 provides more details about its network
engine. Not pictured here is VisorRFLow’s network filter.

Consider process P, in DomU which invokes a system call (@).
The act of invoking a system call normally involves the operat-
ing system (@), but here it also involves the hypervisor (©) and
the VisorFLow security monitor (@). The VisorFLow security
monitor observes such system calls and infers how they allow in-
formation to flow between processes, and the security monitor’s
operating-system engines use these observations to implement a
taint-tracking system which resembles StMPLEFLOW.

In the case of network system calls, the VisorRFLOW network
engine works with Domo0 and the hypervisor to mark as evil packets
originating from tainted processes and to taint processes which
receive marked packets. For example, if the Linux engine infers that
a system call from a tainted process P, would result in network
traffic, the Linux engine would notify the network engine (@®). The
network engine in turn adds a network filter rule to the host firewall
through firewalld which has the affect of labeling P,,’s packets as
evil (®). The added rule involves instructing NetFilter to rely on
VisorFLow to actually set the evil bit using the NFQUEUE interface
(®). Later, the Linux engine might infer that P, exited; when this
happens, the Linux engine and network engine will remove the
firewall rule which labeled P,’s packets as evil.

4.1 System-call tracing

VisorFLow builds its system-call tracing on libvmi [29] and Xen’s
altp2m interface. VisorRFLOW makes use of a variant of invisible
breakpoints which resembles SPIDER and DRAKVUF.

Our implementation of system-call tracing takes the form of
libguestrace, a library which we distribute independently of Vi-
sorFLow. Our hope is that libguestrace will be useful in crafting
other software which needs to monitor system calls within a guest
operating system. The libguestrace API allows an application to
register callbacks which the library’s event loop invokes when it
detects a system call or return. The library also provides features
to read certain state from the guest, hijack a system call, associate
additional file descriptors into the library’s event loop, and invoke
existing libvmi facilities on the guest. Here we describe the inter-
nals of libguestrace; we ship documentation of its API along with
its source code.

Our design was motivated by allowing VisorRFLow on Windows
to monitor only the system calls relevant for information flow; per-
formance otherwise suffers due to the large number of uninteresting
system calls. Libguestrace supports this while permitting multiple
virtual processor cores and threads, avoiding a more complicated
analysis of disassembled instructions, and remaining durable in
the face of many of the types of changes seen across Linux ker-
nel versions. Libguestrace maximally targets hardware interfaces,

[@a] handlerFunc:

[b] syscallFuncy:

CALL syscallFuncy,

—

Type 1 breakpoint: Overwrite

return pointer on stack with

address of INT 3 found in
memory; handle call; restore

VisorFLow

i - _— INT-3
H b h E
Orig. instr. ¢ w4
A AAANAANAAANA LS i R
(NANANANANNNNNA
INT-3 ¢ RET
[i=

original instruction for one step

Type 2 breakpoint: Handle
return; hijack RIP to continue
from original return point

Figure 2: VisorRFLOw instruments system calls by placing a breakpoint at the beginning of each kernel procedure which im-
plements a system call; VisorFLow also instruments system call returns by manipulating the kernel stack to trigger another

breakpoint

falling back on detailed introspection only when necessary for
performance reasons.

Overview: Libguestrace implements an event loop whose events
are system calls and returns on the monitored guest. For each event,
libguestrace invokes a callback which the using application (here Vi1-
sorFLow) registered. Figure 2 summarizes how libguestrace traces
system calls. VisorRFLOW, in turn, uses libguestrace to implement
its Linux and Windows authorization engines.

The x86_64 architecture’s 1star register points to the routine
invoked by the syscall instruction after transitioning the proces-
sor to privileged mode. For the purpose of our desription here, we
call this routine handlerFunc (@]). Other routines, which we collec-
tively call syscallFunc, (b), exist on both Linux and Windows for
each particular system call. The handlerFunc routine invokes these
routines using a jump table indexed by the system-call identifier
provided from userspace.

Libuestrace ensures two types of breakpoints exist within
the running kernel: breakpoints triggered upon entering some
syscallFunc, and breakpoints triggered upon returning from
some syscallFuncy. The former catches system-call parameters,
and the latter catches system-call return values. At startup time,
libguestrace searches the kernel’s code for the address of a byte
which coincidentally matches the opcode of the breakpoint in-
struction (INT-3). Here we call this address trampolineRetPt ([c]).
Finding this byte is a prelude to handling breakpoints of type two,
described below. (The use of a breakpoint opcode which already
exists in the kernel avoids the need to obtain a new a page by
hijacking the guest kernel allocation routines.)

Libbuestrace establishes its type-one breakpoints by using Lib-
VMI to look up by symbol name the address syscallAddr, of each
syscallFuncy,. Libguestrace maintains two copies of each frame
hosting such a syscallAddr, address: the unmodified, original
frame and a shadow frame in which libguestrace replaces the byte
at syscallAddr, with INT-3 (EN).

Libguestrace establishes type-two breakpoints by injecting
INT-3s between the return from each syscallFunc, and the orig-
inal return point origRetPt in handlerFunc. When servicing a
breakpoint of type one (B), libguestrace reads the return address
origRetPt from the kernel’s stack and then replaces the value

origRetPt with with trampolineRetPt. This causes the proces-
sor to trigger the INT-3 at trampolineRetPt (EI) when control
flow later returns from syscallFuncy, instead of immediately re-
turning to origRetPt. During the course of servicing this type-two
breakpoint, libguestrace sets the instruction pointer () so that
execution continues at origRetPt ().

Recall that libguestrace cannot naively place type-two break-
points in handlerFunc (e.g., at origRetPt) due to the performance
requirement of tracing only select system calls. Injecting the break-
point between syscallFunc, and handlerFunc rather than plac-
ing it in each syscallFuncy, avoids the requirement of disassem-
bling the kernel to search for all of the return paths from each
syscallFunc,. We found such disassembly to be error prone for
two reasons: First, dynamically-computed control flows confound
static analysis [35, 38]. Ten syscallFunc procedures in our guest
Linux kernel make use of a jmp instruction which reads its operand
from a register. Second, compiler optimizations appear to result in
procedures which share basic blocks ending with a return instruc-
tion. The spurious returns which result trigger enough breakpoints
to outweigh any performance gains when compared to our tech-
nique.

Libguestrace can determine the type of a triggered break-
point by inspecting the address that caused it. If the address is
trampolineRetPt, then the breakpoint is of the second type; oth-
erwise, the breakpoint is likely of the first type. A third case is
possible: that the address of the breakpoint is wholly unknown to
libguestrace. In this case, libguestrace reinjects the breakpoint into
the guest as it was likely put in place by a debugger.

When the kernel triggers a breakpoint of the first type, libgues-
trace manipulates the stack as described earlier and correlates the
breakpoint address with the system call identifier. It then passes
control to the application (VisorRFLow) which records the process
ID, thread ID, and system-call arguments (rdi, rsi, and so on) as a
call record. Finally, VisorFLow reverts to the unmodified frame for
one step of execution to allow syscallFunc, to complete.

When the kernel triggers a breakpoint of the second type, libgues-
trace again passes control to VisoRFLOw. VIsorRFLOW records the
process ID, the thread ID, and the system-call return value (rax). At
this point VisorFLow can correlate the system call with its return:

the process ID identifies the common process, and the thread ID
identifies the common thread. Finally, libguestrace sets the instruc-
tion pointer as described earlier to allow the kernel to continue
executing.

Windows considerations: We found that the Windows kernel
occasionally calls syscallFunc, routines from places other than
handlerFunc. Such calls caused early versions of libguestrace to
malfunction because of thread ID collisions. When a thread received
multiple type-one breakpoints without a corresponding type-two
breakpoint (such as with recursion), libguestrace would lose track
of earlier call records and thus mishandle the system-call return.
To remediate this and to support future work, libguestrace now
maintains a stack of call records for each active thread ID. Libgues-
trace pushes the call record onto a stack while servicing a type-one
breakpoint, and libguestrace pops a record from the stack while ser-
vicing a type-two breakpoint. To improve performance, libguestrace
trusts kernel code and thus ignores type-one breakpoints which
do not result from user-space system calls; libguestrace identifies
such calls by inspecting the current thread’s previous mode value
[33, Ch. 3]. Libguestrace finds this value by walking a number of
in-kernel structures which it identifies using Rekall.

Windows provides a feature called Kernel Patch Protection (KPP)
which prevents modifications to the Windows kernel. If the Win-
dows kernel were to detect the breakpoints we implant in exe-
cutable regions of memory, then it would terminate. Libguestrace
follows SPIDER and DRAKVUF by avoiding KPP detection through
its use of invisible breakpoints. Libguestrace’s modified frames re-
main mapped for most of the kernel’s runtime, but libguestrace
maintains read traps on these frames. When the processor loads
an address contained in such a frame for a read, this trap allows
libguestrace to first replace the modified frame with the unmodified
one for one execution step. Thus all read instructions access only
unmodified frames, while instructions themselves come from the
modified frames. Because of this, KPP never detects the breakpoints
which libguestrace places in the kernel. The versions of Linux we
studied do not require this technique, but it does no harm to them.

Virtual memory: Virtual memory can cause trouble in a system
which observes system calls using VMI. Consider that the open
system call takes as its first parameter a string S. The operating
system might have swapped the page containing S to disk, or the
operating system might not yet have loaded the page due to lazy
loading. The latter scenario is a common occurrence in programs
which store constant strings in readonly pages.

VisorFLow records only register contents at system-call time; in
the case of registers which contains addresses, VisorRFLow delays
reading the target object until return time. By then the operating
system would have itself either read the object and thus loaded its
containing page if necessary or returned an error condition. Two
exceptions are connect and execve, because these calls perform
work at system-call time which requires accessing passed objects
in memory. We further describe these exceptions in §4.2.2.

4.2 VisorFLow authorization engine

VisorFLow’s authorization engines observe a stream of system calls
to infer the information flow which results. Based on this analysis,
VisorFLow marks processes as tainted, marks files as confidential,

edge

name: root
ref: 1
ta;get / parent

+

links: 1

children

!

edge

name: var name: usr
ref: 1 ref: 2
target / parent target / parent
¥ 52
links: 1 links: 1
children children
4
name: tmp name: tmp
ref: 1 ref: 2
ta;get / parent ta:get / parent

- |

links: 2
children e———— NULL

path: /usr/tmp

Figure 3: The two columns of boxes on the left represent the
internal structures involved in implementing shadowfs; this
example illustrates how shadowfs supports aliases, here two
paths to the directory tmp; the linked list on the right repre-
sents the path data structure

and labels packets which pass from the monitored guest operating
system to the physical network hardware.

Rather than rely on deep introspection to discover system state,
VisorFLow maintains a number of shadow data structures which
reflect the internal state of the monitored operating-system kernel.
VisorFLow builds these data structures as it observes system calls.

4.2.1 Shadow data structures. Most notable of VisorFLow’s
shadow data structures is its shadowfs, which contains information
about system objects found in the guest’s filesystem; a mapping
from Process IDs (PIDs) to program information; and a collection
of flows which describe network connections.

The shadowfs: VisorFLow’s shadowfs is a directed graph de-
rived from the paths observed as arguments to system calls. We
depict this graph in Figure 3. When VisorFLOW observes a new file
path—for example, as an argument to open on Linux—it adds it to
its shadowfs.

A shadowfs node represents a filesystem object, and it keeps a
record of that object’s status along with the edges to its children. An
edge represents links between two filesystem objects and contains
the object’s name. While each node is unique, many edges can point

to a single node. The bottom node in in Figure 3 is an example of
this; such an arrangement follows from hard and symbolic links.

The shadowfs portion of VisorRFLOw exports an interface which
is based on path objects. A path is merely a linked list of edges.
VisorRFLow maintains mappings from process ID/file descriptor
pairs to these paths, and it views and modifies the status of filesys-
tem objects (nodes) through the head edge of some path list. If
the status of a path’s head changes, then the change is reflected
in any other path that points to the same node, even if the textual
representation of these paths differs.

Some system calls result in adding nodes to the graph which
bear a Universally Unique ID (UUID) as a name, instead of a name
which matches a name present in the monitored guest. These
calls include socket, pipe, eventfd, signalfd, timerfd_create,
epoll_create,and inotify_init. Here the particular name is not
important other than it must be unique. Storing objects such as
sockets in the shadowfs allows VisorFLOW to reference them by
process ID/file descriptor in a manner consistent with normal files.

Both edges and nodes keep track of reference counts in order
to support garbage collection: nodes track the number of edges
pointing to them, and edges track the path objects referencing
them as well as whether they have a parent node (linked or un-
linked). VisorFLow frees edges and nodes when their reference
count decrements to zero.

Process tracking: VisorRFLow uses a pid_info structure to
store information about each process it observes. A pid_info con-
tains information about the process’s context, including its current
working directory, root directory, mapping from file descriptors
to system objects (such as files or network sockets), the program
name, information about shared memory mappings, and the pro-
cess’s taint status. VisorRFLOW establishes a pid_info structure
upon observing a clone system call and removes it after observing
an exit_group.

Network-connection tracking: VisorFLow uses a flow struc-
ture to track information about network connections. A flow con-
tains the parameters of a connection, including its domain, type,
protocol, source address, and destination address. On Linux, VI-
sorFLow creates a flow in response to the socket system call, and
VisorFLow fills in the flow’s fields as it observes subsequent calls.

4.2.2 Key design considerations. Here we describe some of the
key design considerations of VisoRFLOoW’s authorization engine. In
the interest of space, we focus mainly on key UN1x system calls. The
design of VisorRFLow’s support for Windows system calls resembles
these.

clone: A successful clone system call creates either a new thread
or traditional process, depending on whether the CLONE_VM flag
exists in its arguments. Threads within a process share a memory
space, and although this permits the flow of information without
system calls, all of the threads within a process bear the same
taint status. Thus VisorFLow does not distinguish between threads
within a traditional process and ignores clone calls which do not
result in a traditional process.

If clone results in a traditional child process, then VisorFLow
copies some of the parent’s context into the child. This inherited

information includes the process’s taint status, program name, cur-
rent working directory, root directory, file descriptors, and shared-
memory information.

Linux leaves undefined whether the parent or child process ex-
ecutes first following a CLONE_VM clone. We also note that the
child does not trigger a type-two breakpoint as it leaves the clone
call, because the child bears a new stack. If the parent executes
first, then VisorFLow’s type-two clone handler builds a pid_info
structure for the child. If the child executes first, then it will trigger
some system call, and that call’s handler will lookup the parent’s
pid_info by PID; VisorFLow then builds the child’s pid_info
structure based on the parent before continuing. Some processes
have a kernel thread as a parent; in these cases, VisorRFLow always
leaves the process untainted because VisorFLOW trusts the guest
kernel.

exit_group: When a process P calls exit_group, VisoRFLow
checks to see if P has any recently-cloned children. If not, then
VisorFLow frees the pid_info associated with P. If a child C of P
exists, and C does not itself yet have a pid_info, then VisorFLow
delays freeing P. This allows VisorFLow to create C’s pid_info
after observing C make a system call. Without these checks, the
parent could execute first and exit before the child had a chance to
inherit from its state.

Inconsistencies such as crashed programs can cause VISORFLow
to miss the termination of a process; in this case, ViIsorRFLow frees
the dead process’s pid_info structure after observing a clone
which reuses the process’s PID.

execve: The execve system call is notable because on success
it does not return and instead replaces the contents of a process’s
memory space to establish a new execution.

The former property could make it difficult to establish a type-
two breakpoint. Luckily, Linux’s system-call dispatcher calls a stub
procedure, stub_execve which in turn calls sys_execve. Thus
VisorFLOW instruments sys_execve as this procedure always re-
turns, leaving stub_execve to adjust control flow in accordance
with the semantics of execve.

Still, the latter property means that VisorRFLow cannot delay
reading the program filename parameter F; thus it cannot follow
the missing-page remediation noted in §4.1. Instead, VisorRFLOW’s
type-one execve handler temporarily sets the program name to a
generic value if it fails to read from F’s page, and VisorFLow later
sets the true value in its type-two handler after reading it from the
process data structure using VML

VisorFLow modifies fields in the pid_info structure correspond-
ing to a process which calls execve. VisorFLow sets the new pro-
gram name, untracks shared memory, and clears the process’s taint
if the new program is trusted. VisorFLow also disassociates file
descriptors marked close-on-exec.

dup: Upon observing a dup, dup2, dup3, or file-descriptor dupli-
cating fcntl, VisorRFLow associates an existing path with a new
file descriptor. VisorRFLow propagates the close-on-exec flag under
the appropriate conditions, and it implicitly closes the new file
descriptor passed to dup2 or dup3 if already in use.

mmap: The mmap system call presents a unique challenge to Vi-
soRFLOw because it can be used to set up memory shared between
two processes. Once process P; uses mmap to set up memory shared

with Py, P; and P, can communicate without requiring subsequent
system calls such as read and write. Indeed, the transitive nature
of shared memory further complicates mediation: relationships
between processes and files due to shared memory form a directed
graph, and paths through this graph determine where information
can flow without system calls. If P; shares memory with P, and P,
shares memory with P3 then tainting P; should cause both P, and
P53 to become tainted too. Furthermore, VisorRFLow should mark F;
confidential if it backs pages mmaped with the PROT_WRITE flag by
Py, Py, or P3. VisorFLOw must act conservatively, assuming such
information flow takes place.

In VisorFrow, pid_infos and nodes serve as the graph’s ver-
tices, edges are shared mappings, and page permissions dictate the
direction of an edge. An edge is directed from a process to a file if
the mapping is writable, and the other way if readable.

VisorFLow’s pid_info contains two shared-memory-related
fields: a mapping of paths to page permissions and a mapping
of shared memory page addresses to the paths which back the
page. The former mapping establishes the edges and their direction.
VisorFLow updates this mapping in response to mmap, munmap, and
mprotect. The latter mapping allows VisorFLOW to remove edges
in response to an observed munmap.

Each node contains a mapping from PIDs to shared page counts.
This mapping constitutes a path’s edges in the shared memory
graph. Thus if VisorRFLow marks the node confidential, then Vi-
sorRFLOW can taint the processes which have it mapped as shared
memory after checking the edge direction through the mechanism
described above. Tracking the number of pages within the file that
each process has mapped allows a PID to be removed from this
mapping when the number of pages decrements to zero due to calls
to munmap.

A vertex in this shared-memory graph changes status if there
exists a path to it from some other node VisorFLow marks con-
fidential or tainted. VisorRFLOw assumes that mmaped pages stay
synchronized with its respective file; it ignores msync.

Never-taint: Certain patterns can cause overtainting of pro-
cesses. One such pattern follows from configuration files which
programs read upon executing and update during execution. A
tainted process will mark such a file as confidential, and from that
point on the program will become tainted after reading the confi-
dential configuration file each time it runs. Examples of this include
the bash shell’s .bash_history file and a browser’s cookie file.
VisorFrLow follows IX [26, §2.4] and SimpLEFLOW [19] by providing
anever-taint label.

When a tainted process tries to write to a file which bears the
never-taint label, the operation returns ~EPERM. In practice, VI-
sorFLOW short circuits the write-related system calls so that they
return this value instead of allowing the write to occur. VIsSor-
FLow also forbids mmaps which could result in a tainted write to a
never-taint file. Untainted processes which mmap never-taint
files are subsequently forbidden operations which would taint them.

Trade offs surrounding shadow data structures: The ap-
proach of VisorRFLow runs counter to the suggestion of Garfinkel
[13], who argues that recreating kernel internals should be avoided.

Our technique has the advantage of targeting relatively static inter-
faces such as the hardware and system-call interfaces rather than
kernel-internal structures.

VisorFLow prevents a few of Garfinkel’s pitfalls due to its man-
ner of handling the system calls we described earlier. VisorRFLoW’s
handling of dup detects when the system object underlying a file de-
scriptor changes [13, §4.1.1]. VisorFLow also tracks file descriptors
transmitted between processes [13, §4.2] using recvmsg.

Another class of problems arise from the possibility of a race
condition which might exist between the body of a guest system
call and VisorFLow’s type-two breakpoint (or between a type-one
breakpoint and system-call body). A thread scheduled in between
could make a change which causes the operating system and Visor-
FLow to manipulate two different objects. In order to avoid argu-
ment races [13, 4.3.3], relative path races [13, 4.3.2], and file system
information races [13, 4.3.4], VisorFLow copies non-scalar argu-
ments to a private page, resolves paths there if the argument holds
one, and adjusts the registers which contain the passed address to
instead refer to this copy. The potential for shared descriptors [13,
4.3.5] does not hide information flow due to VisorFLow’s handling
of file descriptor duplication; VisorRFLow leaves the outright denial
of related operations to the underlying operating system’s access
controls.

Symbolic links also thwart many security tools which rely on
system-call interposition [13, 4.3.1]. Indeed, the subtle difference
between the aims of tracking information flow and standard access
controls gives rise to a number of similar path-modification attacks.
Without considering this, VisorRFLow might miss a confidential
read. For example, one thread might pass through VisorFlow’s check
on creat(path, ...), and another thread might replace the object
at path with a different, confidential object before the first thread
proceeds.

VisorFLow addresses this broad class of race conditions by first
locking the filesystem before servicing certain type-one breakpoints
and then leaving the lock in place until the guest kernel triggers the
corresponding type-two breakpoint. This ensures that system calls
such as open and creat which obtain system objects are atomic
relative to other system calls which can modify the underlying
filesystem object. When the filesystem is locked, other threads
which trigger related type-one breakpoints wait until the first thread
releases the lock.

4.3 VisorFLow network

VisorFLow aims to allow users access to confidential data for le-
gitimate work. Yet a malicious insider might want to sell secrets,
an outside attacker might fool a naive user into running his soft-
ware, or an outside attacker might use a vulnerability to gain access
and cause software to misbehave. In any case VisorRFLow should
prevent the exfiltration of confidential data from the network. Fur-
ther, we want VisorFLow to provide information and evidence
surrounding suspicious activity. Here we describe how VisorFLow
mediates networking system calls as well as how it integrates with
the firewall present on a network.

Source ports: VIsorRFLow uses a firewall outside of the guest to
set the evil bit on the guest’s tainted packets. This design avoids

modifying the guest kernel or relying on unnecessarily sophisti-
cated virtual-machine introspection. We describe here how Visor-
FLow remediates a challenge which follows from this design.

To prevent false negatives and positives, the firewall rules respon-
sible for setting evil bits must match the transport-layer protocol,
destination IP address, destination transport-layer port, source IP
address, and source transport-layer port. We call this five-tuple a
flow. The first three elements of a flow are evident to VisorFLOw,
as a result of observing a connect, sendto, sendmsg, sendmmsg,
or sendmmsg system call. The source IP address of the monitored
guest is also known to VisorFLow. The source port, on the other
hand, is not the parameter to or return value from any system call
required to send a network message. Put another way, VisorRFLow
can observe system calls and outgoing packets, but it is not trivial to
identify which system call caused the transmission of which packet
because two processes often send packets to the same remote host,
especially with DNS queries. (On UN1x, the bind and getsockname
system calls are not required before sending an IP packet, and thus
VisorFLow cannot rely on programs using them.)

To solve the challenge of identifying source ports, VisorRFLow
places all flows into two categories: partial and complete. A partial
flow has a yet unknown source port. If a flow is in the complete
category, then VisorRFLow has correlated it with a sending process,
and thus knows the relationship between the flow’s source port
and the sending process. We next describe how VisorFLow moves
flows from the partial category to complete in order to allow for
precise firewall rules. We summarize this in Table 1.

When process P invokes a connect system call, VIsoRFLow
records the relationship between P and the resulting partial flow
Fp. VisorFLow then checks to see if a mapping between another
process and Fp already exists. A match means some other process
P’ has already requested that a packet be sent on the partial flow,
but VisorFLow has not yet observed this packet. In this case, Visor-
FLow short circuits P’s system call to return EAGAIN; this ensures
that only one process—either P or some P’—produces outgoing
packets on a Fp. Otherwise, the connect proceeds, and the guest
operating system produces a SYN packet for P. Thus VisorRFLow
knows upon observing a packet on Fp that it should associate the
packet’s source port with the appropriate process, thereby complet-
ing the flow.

The processing of connect is one case where VisorRFLow must
do much of its work upon observing a system call as opposed to
a system return. This is because the monitored kernel will queue
a SYN packet before the system call returns. VisorRFLow must act
early if it is to mark this packet appropriately. Thus VisorFLow
hijacks connect to return -EAGAIN if it cannot yet read the call’s
struct sockaddr parameter because its page is unavailable (recall
the discussion of virtual memory in §4.1).

VisorFLow discovers the source port for UDP and ICMP/raw
transmissions in a similar manner. Here VisorRFLow might not
observe a connect, but it will behave in a similar manner on a
call to sendto, sendmsg, or sendmmsg. If Fp already exists, then
VisorFLow will short circuit to return @ instead of EAGAIN.

When VisorFLOW observes a packet belonging to a partial flow,
VisorFLow notes its sending port, finds the process which has sent
a packet on that flow (there will be only one for the reasons given

DomU/Guest o Dom0
connect > .
(1) NetFilter
' 2) ®
VisorFLow “="7 | firewalld | 7777
NFQUEUE)
portFind
(6]

Figure 4: VisorFLow integrates with firewalld and
NFQUEUE to solve the problem of correlating source
ports with processes within the guest

above), completes the flow by adding the source port, and checks
to see if the associated process is tainted. If the process is tainted,
then VisorRFLow sets a firewall rule to set the evil bit on outgoing
packets within this flow.

We depict the details of this scheme in Figure 4. VisorFLow
registers two NFQUEUE callbacks at startup time: (1) portFind,
which reads the source port out of a packet and (2) setEvil, which
sets the evil bit on a packet. VisorFLow uses firewalld’s D-Bus
interface to add rules to the Dom0 firewall which cause packets to
pass through one or both of these NFQUEUE callbacks.

Consider a guest application which calls the connect system call.
This will transfer control to VisorFLow (@), and VisorFLow will
invoke its connect handler. Assuming a partial flow does not yet
exist for the parameters passed to connect, ViIsorRFLow’s connect
handler will establish a firewall rule (@, ®) which causes Dom0’s
NetFilter module to pass packets which match the partial flow to
VisorFLowW’s portFind callback. VisorFLoW’s portFind firewall
rules follow the form:

-A FORWARD -p PROTO -s SRC-IP -d DST-IP \
--destination-port PORT -j --queue-num @

Once VisorFLow is done handling the connect, VisorFLow al-
lows guest progress to continue, and the guest operating system
emits a SYN packet (@). With the aforementioned firewall rule in
place, Dom0’s NetFilter passes the packet to VisorRFLow (@). VI-
sorFLow records the source port, completes the flow, and passes
the packet back to Dom0’s NetFilter for transmission (®). A similar
sequence occurs in response to a sendto, sendmsg, or sendmmsg.
When the reference count for a socket object S reaches zero—for
example due to a close or exit_group—then VisorRFLOW removes
any firewall rules related to S.

Network writes: The connect, write, send, sendto, sendmsg,
sendmmsg, close, and shutdown system calls might produce net-
work packets, so VisorRFLow instruments these to apply the evil bit
when appropriate. ViIsorFLow uses its other NFQUEUE, setEvil,
to set the evil bit within such a packet.

The connect, sendto, and sendmsg calls can be used before a
socket is in a connected state, and we discussed above how VISoOr-
FLow handles them. The other network system calls will produce
packets only if the socket is in a connected state. In these cases,
VisorFLow has all of the requisite information, so it will associate a
setEvil NFQUEUE callback with the completed flow if the calling
process is tainted.

Table 1: Transitions between partial and complete network flows

Partial flow Fp established with ...

Action while searching ...

Observation which transitions Fp—Fc ...

TCP connect

All other network-transmitting sys- SYN seg. with matching destination IP and port

UDP connect, sendto, or sendmsg tem calls return EAGAIN or @, and Datagram with matching destination IP and port
ICMP/raw connect, sendto, or sendmsg firewall watches for packet on Fp Packet with matching destination IP and port

to discover source port

...in any case, firewall rule completed

VisorFLow frees flows when it observes their socket file de-
scriptor as the argument to close or shutdown. Other events such
as exit_groups or close-on-exec also cause VisoRFLOW to free a
flow.

Windows networking: Windows implements a BSD-
socket-like service internally, but applications use the
NtDeviceIoControlFile system call to request that the
service manipulate a network connection. One of the arguments
to NtDeviceIoControlFile is a control code which determines if
NtDeviceIoControlFile will act as a bind, connect, and so on.
The source port for a connection is present in the return values
from a NtDeviceIoControlFile call when the AFD_SET_CONTEXT
or AFD_BIND flags are set. Thus VisorFLow does not need here the
more complicated technique is uses to find source ports on Linux.

Filtering evil packets: The VisorFLow network has two key
aspects. First, the monitored guest exists on a different subnet than
Dom0’s physical interface. This allows Dom0’s firewall to label
with the evil bit packets which came from tainted processes, and
we discussed the details of this earlier. In practice, we used Xen’s
support for dividing its physical and virtual network using NAT, but
traditional routing could be used too. Second, VisorRFLow relies on
an upstream gateway which performs the filtering of evil packets.
We discuss this here.

VisorFLOW reuses SIMPLEFLOW’s network filter [19, §4.2]. The
network filter blocks packets which VisorRFLow marked with the
evil bit due to coming from tainted processes, and it spoofs the
responses which would have otherwise followed. This presents
the appearance that the connection is progressing through a DNS
lookup and three-way TCP handshake. Eventually, VisorFLow will
capture an application-layer request, and this give key insight into
the intentions of the program being blocked.

4.4 Administrative interfaces

The administrator configures VisorRFLOw using a configuration
file, typically installed at /etc/visorflow.conf. This file defines
the files VisorFLow will consider confidential upon booting as
well as the lists of trusted programs, never-taint files, and existing
symbolic links. When VisorFLow exits, it adds to this configuration
any path which became tainted or any symbolic link created while
VisorFLOWw ran.

The VisorFLow console is the primary interactive interface pro-
vided by VisorFLow. The console provides to an administrator the
ability to query and change VisorFLOW’s state from the command
line. The console provides the following commands:

count display number of system calls observed
ps display known processes along with their taint and
trust states
1s display known files along with their confidential-
ity, trust, and never-taint states
flows display current network flows

taint I taint the process matching PID I

untaint I untaint the process matching PID I
conf F mark file F as confidential
unconf F remove confidential mark from file F

trust P mark program at path P as trusted
untrust P remove trusted mark from program P

never P mark program P as never-taint
unnever P remove never-taint mark from program P

discard discard and reload from VisorRFLow’s configura-
tion the taint/confidential state
store write filesystem state to configuration file
detach detach from the guest and quit VisorFLow

5 EVALUATION

Here we describe our use of VisorFLow during a large-scale net-
work defense competition, the 2017 CDX. We also describe a num-
ber of experiments which measured the performance of VisorFLow.

Cyber Defense Exercise: The CDX is a competition sponsored
by the NSA which pits undergraduate schools in a competition
to design, build, and defend a computer network. A number of
researchers have documented the CDX [5, 27, 39], including the
2016 US Military Academy (USMA) coaches who provided details
about the CDX in its current form [30]. The team which maintains
the highest degree of confidentiality, integrity, and availability and
performs best on a number of related challenges wins the exercise.

The CDX network is made up of four cells, named white, red,
blue, and gray. The NSA fields the white cell, and it serves as the
referee and maintains the exercise score. The red cell is made up of
personnel from throughout the US Department of Defense (DoD),
and it is tasked with compromising each team’s computer network.
Each team contributes to the blue cell by building their portion of
the overall exercise network at their school. Lastly, the gray cell
consists of a number of host machines connected to each team’s
computer network to simulate naive users. The red cell sends mal-
ware in various forms to the grey-cell users in order to gain initial
access to each team’s computer network. Furthermore, the NSA pro-
vides the base image for each gray computer with malware already
present, and while the competing teams can attempt to remove this
malware, the rules forbid upgrading the software present on the
gray computers.

Each school accumulates points by maintaining the confiden-
tiality, integrity, and availability of their portion of the network.

The white cell uses a software agent to install tokens on blue and
gray computers, and the red cell’s goal is to violate each school’s
confidentiality and integrity by reading or changing these tokens.
The white cell also scores availability by periodically checking that
services required of the blue teams are running.

Our network consisted of 28 virtual machines, and it included
servers, management workstations, and user workstations; four
network devices; the CentOS, FreeBSD, Ubuntu, Windows 7, Win-
dows 8, and Windows 10 operating systems; and a range of software
services. We installed VisorRFLow on a gray Windows 7 computer,
delta, because we assumed it would be the most vulnerable com-
puter on our network. Delta forwarded its VisorRFLow logs to a
server running a log analysis suite over a Transport Layer Secu-
rity (TLS)-protected channel. During the course of the CDX, we
monitored 447,027,495 system calls on delta while the red cell was
attempting to compromise our network.

We observed during the CDX 2,940 occasions of VisorRFLow
preventing tainted communication on delta. These events were
generated by over a dozen malicious or compromised programs,
including Adobe Acrobat Reader, Internet Explorer, Firefox, Power-
Shell scripts, Python scripts, Windows batch scripts, Java programs,
and a number of executables which users were fooled into installing.
In a meeting with the red cell after the CDX, the representatives
mentioned on how they had great difficulty exfiltrating confiden-
tial information from delta, despite being able to install malicious
software on the computer. Our team scored first in confidentiality,
availability, and integrity. Much of this was due to the efforts of
the team at large throughout the exercise, but using VisorRFLow
to prevent the red cell’s success on delta provided a competitive
advantage.

Performance: We measured the performance of VisorRFLow
with a variety of experiments. Our test computer was a 3.4 GHz
Intel Core i7-4770 Pro with four cores and 32 GB of memory. The
computer ran Xen 4.8.0 along with Fedora 25 as Domo0. CentOS
7.3.1611 and Windows 7 Enterprise with Service Pack 1 served as
our monitored guests. The software we used ran in 64-bit mode.

We first measured the overhead of libguestrace using the gues-
trace utility which accompanies the library. This establishes an
upper bound on the performance of VisorRFLow, because it strips
away the cost of running VisorRFLow’s authorization and network
engines. We instrumented the portion of libguestrace’s event loop
which invokes system-call and return handlers, and we ran gues-
trace with flags which prevented it from writing to the terminal.
To perform our experiment, we ran on the guest a program which
rapidly closed invalid file descriptors. These operations fail quickly
to stress libguestrace, and they simulate the heavy load of system
calls invoked when logging onto a Linux system—before forking to
execute a shell, the login facility ensures it has closed all of its file
descriptors. We also ran the same program with monitoring turned
off and under VisorFLow. Table 2 summarizes our results.

Executing the core logic of guestrace’s system-call and return
handlers costs an average of around 55,000 and 6,000 cycles, re-
spectively. Much of this cost comes from manipulating the kernel
stack as described in §4.1. Writes to guest memory cause libvmi to
flush pages from its memory cache. Other delays follow from the
guest’s exit into the hypervisor and corresponding Xen overhead;

Table 2: Libguestrace performance; each value is the mean
after measuring roughly 102,000 system calls

Measurement Vanilla guestrace VisorFLow
(cycles)
Total 19,818 118,092 124,980
Handling call 55,498 58,581
Setup 1,707 1,790
Get TID 855 916
Get PID 932 1,135
Read stack 614 584
Write stack 47,655 50,414
Push state 1,620 1,383
Syscall handler 1,163 1,750
Handling return 6,038 6,995
Get TID 2,372 2,626
Get PID 895 894
Pop state 1,616 1,595
Sysret handler 280 1,032
Outside handler 56,556 59,404
(Userspace & VM exit)
120.0x
100.0x - Linux I
g s0.0x |- Windows
= 60.0x
8 40.0x
20.0x
0.0 ||
32-byte 1024-byte 1024%-byte
Buffer size

Figure 5: Network performance as measured by iperf

this costs around 57,000 cycles. The overhead of Xen-related work
dominated that of VisorRFLow’s authorization logic.

Our second experiment measured using 1lmbench 2 the relative
performance of the Linux kernel running as a Xen guest with and
without VisorRFLow. We ran 1mbench three times in each case, and
we report here the resulting mean values along with the cost of
VisorFLow as an overhead factor. We also compare VisorRFLOW’s
overhead to the that of SiMpPLEFLOW. Table 3 summarizes key mea-
surements. Each run of 1Imbench on VisorFLow executed roughly
1,118,000 system calls in just under four minutes.

Most of the 1mbench results in Table 3 are within the ranges
predicted by our tests of libguestrace. The exception is open/close.
Open incurs the cost of reading the pathname parameter from guest
memory. The create benchmarks also bear this cost due to creat,
but the filesystem I/O cost—present whether or not VisorFLow is
running—is also notable in this case.

We ran an experiment to measure the impact of VisorRFLow on
Linux and Windows network performance. Here we used iperf
3.1.3, running

iperf3 -s -i @
and

iperf3 -c localhost -i @ -t 60 -f m -1 S,

Table 3: Key Imbench 2 benchmarks, including vanilla and Vi-
sorFLow kernel runtimes, VisorRFLow overhead factor, and
difference between SiIMPLEFLoOw and VisorRFLow overhead

A overhead vs.

Benchmark Base VisorFLow overhead SimpLEFLOW
9 [19, Table 2]
stat 0.99 0.84 0.85 -0.17
open/close 1.76 256.33 145.64 144.63
mmap 5,590.33 38,889 6.96 5.96
create OKB 59.33 485.10 8.18 7.16
delete OKB 10.90 120.63 11.07 10.05
create 10KB 107.03 540.40 5.05 4.01
delete 10KB 14.90 132.10 8.87 7.84
sig inst 0.14 0.13 0.95 -0.05
sig handle 0.68 0.68 1 —0.01
fork 59.90 356 5.94 4.93
exec 1,068 3,072.67 2.88 1.87
sh 1,065.33 8,968.33 8.42 7.39
select TCP 2.66 2.72 1.02 0.05
6.0
o S| I
S 4o0x
@
B sox |
a I
2.0x
1.0x o
wget wget Firefox
1.2 MBx500 512 MBx10 SunSpider

Figure 6: Application performance of wget and Firefox/Sun-
Spider

where S represents a buffer size in bytes. We used the values 32,
1024, and 10242 for S. Since iperf relies on reads and writes,
increasing S reduces the number of system calls necessary for a
given transfer size and thus amortizes their cost.

Figure 5 depicts the results of our network tests. On Linux, VI-
SORFLOW cost a factor of 106X, 100X, and 10X for 32-, 1024-, and
10242-byte buffers, respectively. On Windows, these costs were 15X,
49x%, and 8.7x.

Two concerns arise with our scheme to discover source ports
on Linux: (1) ill-written programs might not retry when a connect
returns EAGAIN or a sendto returns a @ and (2) a malicious program
could try to deny service by continuously establishing a partial
flow, blocking other processes from communicating with the same
service. In practice, these situations rarely arise. First, many net-
working programs handle (1) properly. For the others that do not,
the length of time flows remain in the partial category is very short,
typically less than 30 ms. The short partial-flow window also means
that a malicious program must expend other resources—processing
time due to rapidly-repeating connect calls, file descriptors, net-
work bandwidth, and so on—which would otherwise deny service
even without targeting our scheme. In either case, the use of quotas
would further restrict the attacker.

We wrote a program which forked two processes which both
called connect as fast as possible. Only when dealing with the

loopback interface did we observe a notable number of EAGAIN
errors, even with an artifically high volume of connects. Here
a single connect took roughly 30 ms—within the window noted
above—and we observed roughly half of the connections failed with
EAGAIN. LAN and Internet latencies were more favorable; in these
cases, the EAGAIN error rate was roughtly 2% because the connect
rate was 60 ms and 117 ms, for LAN and Internet connections
respectively.

Our final experiment aimed to measure more common workloads
which are less system-call-bound. For this, we measured the perfor-
mance of wget and Firefox on Linux. We ran wget under two loads:
downloading a 1.2 MB file 500 times using HTTPS and downloading
a 512 MB file 10 times using HTTPS. These transfers took place
over a LAN to provide a low but not insignificant network latency.
We also ran the SunSpider benchmark on Firefox. Figure 6 depicts
the results of these tests. Running wget under VisorFLow cost a 5%
and 3.9% overhead for the 1.2 and 500 MB transfers, respectively.
VisorFLOW cost 1.3X when running SunSpider.

6 CONCLUSION

VisorFLow imposes information-flow controls on an operating
system without modifying its kernel or userspace. We applied our
VisorFLow prototype during the 2017 CDX, and VisorFLow pre-
vented over a dozen malicious or compromised programs running
on Windows 7 from exfiltrating data during the competition.

We found the performance of VisorRFLow to be usable, and the
system’s performance was adequate during the CDX. However,
microbenchmarks indicate that VisorRFLow presents a notable over-
head on individual system calls. The affect of this on real workloads
depends on the degree to which the workload makes system calls
as opposed to being computationally bound.

Enforcing an access-control model from the hypervisor does
present a challenge in that some system calls seem to suggest very
deep introspection. For example, the observation of system calls is
insufficient for VisorRFLow to determine if a new file results from
a program calling open with the O_CREAT flag. This is because the
return value from open does not indicate whether or not the file
already existed. VisorFLow takes the simpler and more conserva-
tive approach of assuming the file is new. Whereas SiMpLEFLOW
might not mark confidential a file opened with O_CREAT by a tainted
process, VisorFLow always does.

Another difficulty arises from filesystem aliases such as hard
and symbolic links. These provide a challenge to VisorRFLow be-
cause VISORFLow must either avoid missing any 1ink or symlink
system calls or walk the underlying guest filesystem to discover
aliases. Otherwise, a file might become tainted without VisorRFLow
realizing the association with one of its aliases. In practice, ViI-
sorRFLow allows the administrator to indicate preexisting links in
visorflow.conf, and we assume VISORFLOW is running anytime
the guest runs.

We note that these challenges seem to follow from the richness
of operating systems such as UN1x. Convenience and performance
might benefit from having both open/0_CREAT and creat, or from
having filesystem aliases, but such richness impairs the ability of a
program—or human—to reason about the meaning of the system’s
computations at runtime.

Future work on VisorFLow will include performance optimiza-
tions and alternate access-control models. Ultimately, we would
like to design a modular, cross-operating-system framework which
builds on libguestrace and resembles the Linux Security Mod-
ule (LSM) interface. We also plan to study the value of monitoring
facilities deeper in the kernel. DRAKVUF aims to detect rootkits in
this way, and VisorRFLow could better mediate privileged users, de-
tect some kernel compromises, and address the deep introspection
requirements described above with similar techniques. Striking a
balance between relying on some in-kernel data structures through
deeper introspection while replicating others will allow VisorFLow
to better address the pitfalls raised by Garfinkel [13] while still
minimizing the amount of operating-system-specific code. We also
see using libguestrace to study the general runtime behavior of
kernels aside from access controls.

VisorFLow is available at https://www.flyn.org/projects/
VisorFlow/, and guestrace is available at https://www.flyn.org/
projects/guestrace/.

ACKNOWLEDGMENTS

The authors of DRAKVUF preceded us in implementing many of the
low-level techniques we used in VisorFLow, and we are indebted
to their example. Tamas Lengyel further provided a great deal of
aid to us while we were learning how to use libvmi.

We are grateful for our teammates from the 2017 US Military
Academy CDX team, as they helped us put VisorFLoW to practical
use. We also thank the organizers of the CDX, the red cell, and the
competing teams.

This material is based upon work supported by the US National
Science Foundation under grant CNS-1464121.

REFERENCES

] Dr. Memory. http://drmemory.org/ [Accessed May 8, 2017].

] The netfilter.org project. https://www.netfilter.org/ [Accessed May 24, 2017].

] perlsec. http://perldoc.perl.org/perlsec.html [Accessed Jul 4, 2016].

] ReactOS project. https://www.reactos.org/ [Accessed Apr 20, 2017].

] Apams, W. J., Gavas, E., LAcEY, T., AND LEBLANC, S. P. Collective views of
the NSA/CSS Cyber Defense Exercise on curricula and learning objectives. In
Proceedings of the USENLX Workshop on Cyber Security Experimentation and Test
(CSET 2009) (August 2009).

[6] BaruaMm, P., DraGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBAUER,
R., PRATT, ., AND WARFIELD, A. Xen and the art of virtualization. In Symposium
on Operating System Principles (SOSP) (Bolton Landing, NY, USA, Oct. 2003), ACM,
pp- 164-177.

[7] BeLLoviIN, S. RFC 3514: The security flag in the IPv4 header. https://www.ietf.
org/rfc/rfc3514.txt [Accessed Jan 20, 2016], Apr. 2003. Status: INFORMATIONAL.

[8] CuappELL, G. http://www.geoffchappell.com/studies/windows/win32/ntdll/
structs/teb/index.htm [Accessed May 8, 2017].

[9] Cisco SystEMms, INc. Cisco IOS security command reference. https://www.cisco.
com/c/en/us/td/docs/ios/12_2/security/command/reference/fsecur_r.html [Ac-
cessed Jul 26, 2016], Dec. 2013.

[10] CoHEN, M., STUETTGEN, J., SANCHEZ,]., BUSHKOV, M., METZ,]., AND SINDELAR, A.

Rekall memory forensic framework. http://www.rekall-forensic.com/ [Accessed
Apr 20, 2017].

[11] DENG, Z., ZHANG, X., AND XU, D. SPIDER: Stealthy binary program instrumenta-

tion and debugging via hardware virtualization. In Proceedings of the 29th Annual

Computer Security Applications Conference (New York, NY, USA, 2013), ACSAC

’13, ACM, pp. 289-298.

DESIGNER, S. NT syscalls insecurity. http://insecure.org/sploits/NT.syscalls.

vulnerability.html [Accessed May 8, 2017].

[13] GaRrFINKEL, T. Traps and pitfalls: Practical problems in in system call interposition

based security tools. In Proc. Network and Distributed Systems Security Symposium

(February 2003).

GARFINKEL, T., AND ROSENBLUM, M. A virtual machine introspection based archi-

tecture for intrusion detection. In Proc. of the Symp. on Network and Distributed

[12

[14

[15

[16]

==
&

=
)

~
2

(31]

[32

[33

&
=

[35

[36

(37

[41

Systems Security (NDSS) (Feb. 2003), Internet Society.

GOLDBERG, L., WAGNER, D., THOMAS, R., AND BREWER, E. A. A secure environment
for untrusted helper applications (confining the wily hacker). In Proc. of the
USENIX Security Symposium (San Jose, Ca., 1996).

HEDIN, D., AND SABELFELD, A. A perspective on information-flow control. In
Software Safety and Security - Tools for Analysis and Verification, T. Nipkow,
O. Grumberg, and B. Hauptmann, Eds., vol. 33 of NATO Science for Peace and
Security Series - D: Information and Communication Security. I0S Press, 2012,
pp- 319-347.

HUBER, R. Syscall auditing at scale.

Jonns, M. S., ATKINSON, R., AND THOMAS, G. RFC 5570: Common architecture la-
bel IPv6 security option (CALIPSO). https://tools.ietf.org/html/rfc5570 [Accessed
Jul 26, 2016], July 2009. Status: INFORMATIONAL.

Jounson, R, Lass, J., AND PETULLO, W. M. Studying naive users and the insider
threat with StmpLEFLOw. In Proceedings of the 8th ACM CCS International Work-
shop on Managing Insider Security Threats (New York, NY, USA, Oct. 2016), MIST
’16, ACM, pp. 35-46.

KeNT, S. RFC 1108: U.S. Department of Defense security options for the Internet
Protocol. https://tools.ietf.org/html/rfc1108 [Accessed Jul 26, 2016], Nov. 1991.
Status: INFORMATIONAL.

Kwvity, A., Kamay, Y., LAOR, D., LuBLIN, U., AND Licuorr, A. KVM: the Linux
virtual machine monitor. In Ottawa Linux Symposium (OLS) (2007), pp. 225-230.
LENGYEL, T. K. Stealthy monitoring with Xen altp2m.

LENGYEL, T. K., MARESCA, S., PAYNE, B. D., WEBSTER, G. D., Voci, S., AND Ki-
AYIAs, A. Scalability, fidelity and stealth in the DRAKVUF dynamic malware
analysis system. In Proceedings of the 30th Annual Computer Security Applications
Conference (2014).

LicH, M. H., CASE, A., LEVY, J., AND WALTERS, A. The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linux, and Mac Memory, 1st ed. Wiley
Publishing, 2014.

Loscocco, P., AND SMALLEY, S. Integrating flexible support for security policies
into the Linux operating system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference (Berkeley, CA, June 2001), The USENIX
Association, pp. 29-42.

McILroy, M. D., AND REEDs, J. A. Multilevel security in the UNIX tradition.
Software—Practice and Experience 22 (1992), 673-694.

MutLins, B. E., LAcey, T. H., MiLLs, R. F., TRECHTER,]. E., AND Bass, S. D. How
the Cyber Defense Exercise shaped an information-assurance curriculum. IEEE
Security & Privacy 5, 5 (2007), 40-49.

MYERS, A. C., AND Liskov, B. Protecting privacy using the decentralized label
model. Software Engineering and Methodology 9, 4 (2000), 410-442.

PAYNE, B. D. Simplifying virtual machine introspection using LibVMI. Tech. Rep.
SAND2012-7818, Sandia National Laboratories, Albuquerque, New Mexico, 2012.
PetULLO, W. M., MOsEks, K., KLimkowskT, B., HAND, R., AND Orson, K. The use of
cyber-defense exercises in undergraduate computing education. In Proceedings
of the 2016 USENIX Workshop on Advances in Security Education (Washington,
DC, USA, Aug. 2016), ASE *16, USENIX Association.

ROSENBLUM, M., BUGNION, E., DEVINE, S., AND HERROD, S. A. Using the SimOS
machine simulator to study complex computer systems. ACM Trans. Model.
Comput. Simul. 7, 1 (Jan. 1997), 78-103.

RussIiNovICH, M., AND CoGsWELL, B. Windows NT system-call hooking. Dr.
Dobb’s Journal of Software Tools 22, 1 (Jan. 1997). Belltown Media.
RussinovicH, M. E., SoLomoN, D. A., AND IoNEscu, A. Windows Internals, Part 1,
6th ed. Microsoft Press, 2012.

SCHAUFLER, C. Smack in embedded computing. In Proc. Ottawa Linux Symposium
(2008).

SCHWARZ, B., DEBRAY, S., AND ANDREWS, G. Disassembly of executable code
revisited. In Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02) (Washington, DC, USA, 2002), WCRE ’02, IEEE Computer Society,
pp. 45-54.

SGANDURRA, D., AND Lupu, E. Evolution of attacks, threat models, and solutions
for virtualized systems. ACM Comput. Surv. 48, 3 (Feb. 2016), 46:1-46:38.
STock, B., LEKIES, S., MUELLER, T., SPIEGEL, P., AND JouNs, M. Precise client-side
protection against DOM-based cross-site scripting. In Proc. of the USENIX Security
Symposium (San Diego, CA, Aug. 2014), USENIX Association, pp. 655-670.
WARTELL, R., ZHOU, Y., HAMLEN, K. W., AND KANTARCIOGLU, M. Shingled Graph
Disassembly: Finding the Undecideable Path. Springer International Publishing,
Cham, 2014, pp. 273-285.

WELCH, D., RAGSDALE, D., AND ScHEPENS, W. Training for information assurance.
Computer 35, 4 (2002), 30-37.

YIN, H., SoNG, D., EGELE, M., KRUEGEL, C., AND KIRDA, E. Panorama: Capturing
system-wide information flow for malware detection and analysis. In Proceedings
of the 14th ACM Conference on Computer and Communications Security (New
York, NY, USA, 2007), CCS *07, ACM, pp. 116-127.

ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND MAZIERES, D. Making
information flow explicit in HiStar. In Symposium on Operating System Design
and Implementation (OSDI) (Seattle, Washington, Nov. 2006).

https://www.flyn.org/projects/VisorFlow/
https://www.flyn.org/projects/VisorFlow/
https://www.flyn.org/projects/guestrace/
https://www.flyn.org/projects/guestrace/
http://drmemory.org/
https://www.netfilter.org/
http://perldoc.perl.org/perlsec.html
https://www.reactos.org/
https://www.ietf.org/rfc/rfc3514.txt
https://www.ietf.org/rfc/rfc3514.txt
http://www.geoffchappell.com/studies/windows/win32/ntdll/structs/teb/index.htm
http://www.geoffchappell.com/studies/windows/win32/ntdll/structs/teb/index.htm
https://www.cisco.com/c/en/us/td/docs/ios/12_2/security/command/reference/fsecur_r.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2/security/command/reference/fsecur_r.html
http://www.rekall-forensic.com/
http://insecure.org/sploits/NT.syscalls.vulnerability.html
http://insecure.org/sploits/NT.syscalls.vulnerability.html
https://tools.ietf.org/html/rfc5570
https://tools.ietf.org/html/rfc1108

	Abstract
	1 Introduction
	2 Related work
	3 Threat model
	4 Design and implementation
	4.1 System-call tracing
	4.2 VisorFlow authorization engine
	4.3 VisorFlow network
	4.4 Administrative interfaces

	5 Evaluation
	6 Conclusion
	Acknowledgments
	References

