
Courses as Code: The Aquinas Learning System
W. Michael Petullo

mike@flyn.org
University of Wisconsin–La Crosse

La Crosse, Wisconsin, USA

ABSTRACT
Aquinas aims to maximally apply an everything-as-code approach
to teaching the practice of programming and exploit develop-
ment using hands-on exercises. Teachers define exercises using
a machine-readable format, and Aquinas processes these defini-
tions to setup artifacts such as instructions, grading scripts, and
network targets. Students submit solutions using Git and benefit
from immediate grading. This paper describes the design and im-
plementation of Aquinas, and it evaluates Aquinas’s effectiveness
as a teaching tool in undergraduate and graduate courses. Aquinas
is open source software.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion.

KEYWORDS
computer science education, computer security, exercises

ACM Reference Format:
W. Michael Petullo. 2022. Courses as Code: The Aquinas Learning System.
In Cyber Security Experimentation and Test Workshop (CSET 2022), August 8,
2022, Virtual, CA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3546096.3546099

1 INTRODUCTION
Imagine Tom, a teacher who provides instruction in topics related
to programming and computer security. Tomwants to provide high-
quality practical exercises for his students, but the development and
maintenance of these exercises consumes too much of his time. He
often finds that changes to his environment break his exercises, and
a proliferation of virtual machine images has left him overwhelmed.
He finds himself fighting against course-management software that
expects he use tools not developed for the fields of computer science
and software engineering.

Imagine Samantha, a computer science student who loses her-
self in tools unrelated to her future profession. She submits her
assignments using email, or she manually uploads them to a course-
management software service. Everything seems chaotic, and she
loses track of who has what version. She does not yet realize that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSET 2022, August 8, 2022, Virtual, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9684-4/22/08. . . $15.00
https://doi.org/10.1145/3546096.3546099

better tools exist for managing changes and group work. Her pro-
fessor mentions such tools, but she is left with little time to learn
more. She will be surprised when she arrives at he first job to find
a team expertly managing its operations using Git.

We know that experiential learning enhances the education
of students in the field of computer science [8, 14]. Furthermore,
Capture-The-Flag exercises (CTFs) and other competitive events
blend the value of experiential learningwith the incentives of games.
Such exercises have shown a great deal of value, especially when
learning low-level systems programming and security [10, 22, 28].
Yet building and maintaining these exercises remains hard.

We wondered if an answer could be found in modern software
engineering practices, after observing people who had expanded
these practices beyond their original application. Infrastructure-as-
code [15] applies proven software development techniques, such as
revision control, continuous integration, and continuous delivery,
to network and system administration. An even broader application
of this approach is sometimes referred to as everything-as-code.

This paper describes Aquinas, an interactive learning system
inspired by the everything-as-code approach along with ideas for
improving the convenience and repeatability of the CTF format.
Aquinas builds on other efforts to apply everything-as-code to
the process of educating the next generation of programmers and
software-security experts.

Aquinas was also inspired by the resurgence of what we now
refer to as free and open-source software [20], which occurred
during the last few decades. Hosted Git providers now ease the
dynamic of proposing, testing, and accepting modifications to open-
source software. These developments integrate well into all levels
of education, and they could enhance and broaden education in
the practice of programming with an eye toward computer and
network security.

The overall objective of Aquinas is to develop and study an inter-
active learning system that applies everything-as-code techniques,
integrates well with existing and emerging hosted infrastructure,
and aids teachers who want to develop, distribute, and maintain a
wide range of programming exercises. Of particular interest are the
type of low-level, security-minded exercises found in CTFs, which
have until now required meticulous development and maintenance.

Since Aquinas is open-source, other educators can adopt its use,
and we expect that it will be light enough to ultimately permit
hosting the system for third parties at little cost using a software-
as-a-service model. The client-side requirements of interacting with
Aquinas will remain limited and freely available, thus allowing the
use of Aquinas beyond university education. We would like to apply
Aquinas to middle- and high-school curricula or industry training.

This paper begins with a survey of related work. §3 describes
the motivating factors behind the design of Aquinas, §4 describes

https://doi.org/10.1145/3546096.3546099
https://doi.org/10.1145/3546096.3546099
https://doi.org/10.1145/3546096.3546099

CSET 2022, August 8, 2022, Virtual, CA, USA W. Michael Petullo

Aquinas’s design, §5 evaluates Aquinas along a number of dimen-
sions, and §7 lays out future work surrounding Aquinas. Three
parties appear in the later sections: Samantha, a student; Tom, a
teacher; and Alex, a system administrator. The paper’s conclusion
summarizes what we learned while using Aquinas to teach.

2 RELATEDWORK
An illustrative example of the application of everything-as-code to
course materials was the work of Rodriguez, Allison, Apsey, and
Boudreau [21]. Their work set the foundation for the U.S. Army’s
Cyber School curricula, and their approach achieved a remarkable
scale and pace of collaboration. They focused on managing lectures,
assignments, exercises, infrastructure, and other related items using
a distributed version control system and software-development
practices.

Clifton et al. managed a fundamentals course sequence using
a version control system [6]. Their work required students in an
introductory computer science tomake use of Git. Git allowed teams
to work in parallel, students to continuously commit progress, and
students to pull feedback from the same repository that hosted their
submissions. Instructors were also able to work in parallel, and they
found a number of surprising benefits to using Git. We found hope
in the results they had using Git with students who were new to
programming.

A number of approaches have made experiential learning more
repeatable. SEED [8] built its labs using virtualization and either
Linux or Minix, both freely available. Codecademy [23] provides
browser-based lessons and exercises in fields related to computer
science and programming. NoobLab combines instruction, a pro-
gramming test bed, and assessments [14]. Webseclab provided an
environment for exercises related to teaching web application se-
curity [2]. Indeed there exist many options for online learning in
our field.

Guo studied how systems could replicate the best of classroom
environments in freely-accessible, online settings. His work created
the Python Tutor [11] online programming and program visualiza-
tion platform; Codechella [13], which adds collaborative features to
Python Tutor; and Codeopticon [12], which adds features to allow a
single tutor to help multiple learners. Each of these improvements
made it easier for students to receive high-quality tutoring while
completing programming exercises online.

Capture-the-flag exercises have blended the value of experiential
learning with the incentives of games, and they have emerged as a
popular means of providing low-level systems programming and
security exercises. The gamification of computer science education
has inspired a number of workshops, including the USENIX Summit
on Gaming, Games, and Gamification in Security Education and the
USENIX Workshop on Advances in Security Education. The CTF
format comes in a number of flavors, most commonly Jeopardy-
style, variations of attack-defend, and red-team exercises.

Jeopardy-style CTFs challenge competitors with a series of prob-
lems that the competitors select and complete in, following an order
of their choosing. These CTFs categorize their problems, similar
to the game show that inspired the name of the CTF class. One
example is CyberStakes, most recently sponsored by the US Army.

Carlisle et al. provide a description of integrating CyberStakes into
an undergraduate curriculum [3].

Cowen et al. described the CTF competition at DEF CON 2003 [7];
DEF CON’s CTF is one of the longest-running and most renowned
of the attack-defend variety. A number of efforts aim to turn the
attack-defend CTF into a pedagogical tool for teaching system se-
curity. Researchers from MIT Lincoln Laboratory ran a competition
preceded by a series of security lectures [28]. Andrew Ruef et al.
proposed a style of competition they named “build it, break it, fix
it” [22]. In build it, break it, fix it, competitors first implement a
software system according to a given specification. Next, referees
grade these submissions before allowing the other teams to find
defects in them. In the final phase, competitors fix the defects other
teams found in their work.

The US National Security Agency (NSA)-sponsored Cyber De-
fense Exercise (CDX) [10] is an example of a red-team exercise, so
named because a red team aligned with the competition referees
serves as the sole attacker. These exercises task competitors with
mimicking large-scale networks that they then defend. Red-team
competitions allow entire courses to surround learning, building,
and defending a network.

The popularity of the CTF format has led some to release their
underlying software under open-source licenses. CTFd follows from
the work to administer CSAW, and its developers also provide
managed deployments [4]. picoCTF comes from Carnegie Mellon
University, was originally targeted at applying the CTF format at the
high-shool level, is the system behind the eponymous competition,
and went on to serve as the infrastructure behind a number of other
competitions. PicoCTF tries to lower the bar for use by allowing
challenges to be completed entirely from a web browser. iCTF is a
framework geared towards attack-defend exercises [27].

Chung and Cohen describe some of the pitfalls present in the
CTF format [5]; these include the barrier to entry, the difficulty in
designing pedagogically-sound challenges, quality assurance, the
impact of assigning point values, and the exercise infrastructure.

3 MOTIVATION
Aquinas presently exists as a research prototype, available under
the GNU Affero General Public License. The following goals drove
Aquinas’s design:

(1) maximally employ everything-as-code;
(2) allow for exercises that involve network programming and

exploit development while protecting student work and
course infrastructure;

(3) facilitate easy-to-define exercises with a consistent specifi-
cation language;

(4) ease reuse of exercises across many programming languages;
(5) allow for high-quality assignment instructions;
(6) provide a web- and Git-based interface to students that mir-

rors industry practices;
(7) provide for automated grading and student feedback; and
(8) apply the principle of least privilege and use a type-safe

language to protect student work and infrastructure.
SEED inspired Aquinas, but Aquinas additionally eases the task

of writing new exercises and delivering them. We describe the syn-
tax and facilities Aquinas provides for this below. Consistent with

Courses as Code: The Aquinas Learning System CSET 2022, August 8, 2022, Virtual, CA, USA

everything-as-code, Aquinas stores lectures, assignments, student
submissions, grading results, and more in a revision control system.

We wanted the operation of Aquinas by Tom, our imaginary
teacher, to appear very much like any other software development
endeavor. Our design allows Tom to manage all of his course ma-
terials using Git, and Tom benefits from Aquinas automatically
processing many of the artifacts he creates. Likewise, we set out
to benefit Samantha, our imaginary student, by guiding her to use
modern software-development tools. The idea is that interacting
with Aquinas makes use of these tools, encouraging practice and
thus reinforcing learning. Aquinas purposely deviates from those
learning-management systems that are modeled on business appli-
cations such as word processors or slide-show editors.

Aquinas supports a wide range of exercises, but it is particularly
well suited for the challenges found in the Jeopardy-style CTFs.
Aquinas adjusts the CTF format for use in a curriculum, rather than
favoring a strictly self-taught approach. Yet Aquinas does allow
students to enrich their experience through self teaching, and it
sometimes points out how a student could further investigate a
topic. The design of Aquinas addresses Chung and Cohen’s concern
about quality assurance; this follows from our own experience with
keeping fragile exploit-style homework assignments fresh.

4 DESIGN AND IMPLEMENTATION
Aquinas first served as an educational aid within the US Army’s
Cyber Solutions Development Detachment (CSD-D). Aquinas was
one tool we used in our educational program, which provided cur-
ricula that spanned 12–18 months. We taught non-programmers
from diverse backgrounds who demonstrated an aptitude for pro-
gramming the skills necessary to be contributing members of a
programming team. In total we certified roughly 75 candidates over
a three-year period. The author has subsequently used Aquinas
as a core part of undergraduate and graduate curricula at Univer-
sity of Wisconsin–La Crosse.

Aquinas presently provides 292 lessons spanning six program-
ming languages, namely AMD64 Assembly, Bourne Shell, C, Go,
Python, and Java. Lessons range from introducing students to Unix,
a developer’s environment, and Git to asking the student to exploit
a vulnerable program through the use of Return-Oriented Program-
ming (ROP) [1, 24] or tailor an SELinux [25] policy to support
custom software.

The source code and documentation for Aquinas is available at
https://www.flyn.org/projects/Aquinas, and the canonical instance
of Aquinas is at https://www.aquinas.dev/. (Only select email ad-
dresses can presently self-register.) Work on Aquinas began in
September of 2018.

The rest of this section will imagine a scenario where our teacher
Tom aims to deploy a lesson on ROP to his students, including
Samantha. Tom wants his students to write a program that uses
ROP to exploit a vulnerable network service, extract a secret string,
and print that string to standard output.

Tom the teacher’s view
Tom defines exercises for two audiences: human students like
Samantha and Aquinas itself. Writing for students is a matter of

specifying a lesson and exercise description using LATEX—or, alterna-
tively, Markdown—and pushing that description using Git. Aquinas
provides LATEX commands to make this easier, including condition-
als that allow Tom to specify several language-specific exercises
using one source document. Aquinas transforms Tom’s LATEX into
the HTML that it ultimately delivers to student browsers.

Writing for the second audience—Aquinas—consists of using a
syntax defined by Aquinas to describe exercises so that Aquinas
can deploy and grade them. Tom wants to write an exercise that
requires students to use ROP to exploit a network service in a way
that causes the service to reveal a secret; the ability of a student
solution to print the secret indicates success.

An exercise like this is difficult to define and maintain without
Aquinas. Tom would normally have to take care to compile the
target program in a way that does not break the target’s vulner-
ability. Tom might also want to provide students with a redacted
copy of the binary to allow for analysis and testing. Additionally,
Tom must set up the environment surrounding the network service,
along with firewall rules and other control measures. Furthermore,
the artifacts involved in the exercise are fragile and changes in
the surrounding environment (e.g., updates to the compiler, shared
library, and host system) can cause them to break. Thankfully, with
Aquinas Tom can define his exercise using a JSON-based syntax
that allows Aquinas to automate much of this tedious setup work.

Figure 1 lists the definition of Tom’s “rop” exercise. Tom’s defin-
tion includes a summary along with the languages the exercise
allows. Aquinas will create a variant of the exercise’s page for each
language. Tom’s use of tags allows Aquinas to group exercises by
category (there is also an implicit tag for each language allowed)
before presenting them to a student, and Tom’s prerequisites
define the exercises that a student should complete before this one.
(Prerequisites can, in turn, require further prerequisites, as “nop”
does.)

Tom also defines how Aquinas will grade this exercise, stated
simply in a checks block. This case is straightforward: Aquinas
will run ./rop, as submitted by the student, and Aquinas will check
to see if the value it prints to standard out matches the defined
value (the secret, which we redacted here). Tom could have also
defined expected outputs using regular expressions. The commands
involved can be arbitrary, so a series of checks might do much more
than run the submitted program.

The optional services block defines the network service re-
quired for this exercise. This exercise’s service is defined by the
teacher-written service-rop.c, and Aquinas will compile this
without any special compiler flags before installing it on its target
virtual machine. (Services need not be written in the language that
is required for solutions; service-rop.c will suffice for student
work in C, Go, or Python.) The service listens on TCP port 1,032, and
so Aquinas will arrange for its firewalls to permit traffic between
its user virtual machine and its target virtual machine on that
port. (More on Aquinas’s virtual machines later.) Another exercise,
canary, requires that its target service is compiled to contain stack
canaries; canary thus includes the statement "compiler_flags":
"-fstack-protector" in its services block. Aquinas transpar-
ently stores the resulting programs to avoid potentially breaking
the exercise by recompiling them later, perhaps with a different
compiler.

https://www.flyn.org/projects/Aquinas
https://www.aquinas.dev/

CSET 2022, August 8, 2022, Virtual, CA, USA W. Michael Petullo
Courses as Code: The Aquinas Learning System CSET 2022, August 8, 2022, Virtual, CA, USA

modern software-development tools. The idea is that interacting
with Aquinas makes use of these tools, encouraging practice
and thus reinforcing learning. Aquinas purposely deviates from
those learning-management systems that are modeled on business
applications such as word processors or slide-show editors.

Aquinas supports a wide range of exercises, but it is particularly
well suited for the challenges found in the Jeopardy-style CTFs.
Aquinas adjusts the CTF format for use in a curriculum, rather than
favoring a strictly self-taught approach. Yet Aquinas does allow
students to enrich their experience through self teaching, and it
sometimes points out how a student could further investigate a
topic. The design of Aquinas addresses Chung and Cohen’s concern
about quality assurance; this follows from our own experience with
keeping fragile exploit-style homework assignments fresh.

4 DESIGNAND IMPLEMENTATION
Aquinas first served as an educational aid within the US Army’s
Cyber Solutions Development Detachment (CSD-D). Aquinas was
one tool we used in our educational program, which provided
curricula that spanned 12–18 months. We taught non-programmers
from diverse backgrounds who demonstrated an aptitude for
programming the skills necessary to be contributing members of
a programming team. In total we certified roughly 75 candidates
over a three-year period. The author has subsequently used
Aquinas as a core part of undergraduate and graduate curricula at
University ofWisconsin–La Crosse.

Aquinas presently provides 292 lessons spanning six program-
ming languages, namely AMD64 Assembly, Bourne Shell, C, Go,
Python, and Java. Lessons range from introducing students to
Unix, a developer’s environment, and Git to asking the student to
exploit a vulnerable program through the use of Return-Oriented
Programming (ROP) [1, 24] or tailor an SELinux [25] policy to
support custom software.

The source code and documentation for Aquinas is available at
https://www.flyn.org/projects/Aquinas, and the canonical instance
of Aquinas is at https://www.aquinas.dev/. (Only select email
addresses can presently self-register.) Work on Aquinas began in
September of 2018.

The rest of this section will imagine a scenario where our teacher
Tom aims to deploy a lesson on ROP to his students, including
Samantha. Tom wants his students to write a program that uses
ROP to exploit a vulnerable network service, extract a secret string,
and print that string to standard output.

Tom the teacher’s view
Tom defines exercises for two audiences: human students like
Samantha and Aquinas itself. Writing for students is a matter
of specifying a lesson and exercise description using LATEX—or,
alternatively, Markdown—and pushing that description using Git.
Aquinas provides LATEX commands to make this easier, including
conditionals that allow Tim to specify several language-specific
exercises using one source document. Aquinas transforms Tom’s
LATEX into the HTML that it ultimately delivers to student browsers.

Writing for the second audience—Aquinas—consists of using a
syntax defined by Aquinas to describe exercises so that Aquinas
can deploy and grade them. Tom wants to write an exercise that

{
"name": "rop",
"summary ": "Attack that makes use of ROP",
"languages ": [

"C",
"Go",
"Python"

],
"tags": {

"Exploitation ": true
},
"prerequisites ": [

"nop"
],
"checks ": [

{
"kind": "basic",
"parameters ": {

"command ": "./ rop",
"stdin ": null ,
"stdout ": "[REDACTED]",
"stderr ": null ,
"exitCode ": 0

}
}

],
"services ": [

{
"source ": "service -rop.c",
"port": 1032,
"publish_binary ": true

}
],
"service_files ": [

"flag"
]

}

Figure 1: The definition of an Aquinas ROP exercise

requires students to use ROP to exploit a network service in a way
that causes the service to reveal a secret; the ability of a student
solution to print the secret indicates success.

An exercise like this is difficult to define and maintain without
Aquinas. Tomwould normally have to take care to compile the target
program in a way that does not break the target’s vulnerability. Tom
might also want to provide students with a redacted copy of the
binary to allow for analysis and testing. Additionally, Tommust set
up the environment surrounding the network service, along with
firewall rules and other control measures. Furthermore, the artifacts
involved in the exercise are fragile and changes in the surrounding
environment (e.g., updates to the compiler, shared library, and host
system) can cause them to break. Thankfully, with Aquinas Tom can
define his exercise using a JSON-based syntax that allows Aquinas
to automate much of this tedious setup work.

Figure 1 lists the definition of Tom’s “rop” exercise. Tom’s defin-
tion includes a summary along with the languages the exercise
allows. Aquinas will create a variant of the exercise’s page for each
language. Tom’s use of tags allows Aquinas to group exercises by

Figure 1: The definition of an Aquinas ROP exercise

All of this serves to make defining exercises easy for Tom. Tom
does not need to worry about compiling target service programs;
compiling alternate, redacted versions; setting up firewall rules;
running graders; or placing files so that they are available to
target services. Instead, Tom simply defines his exercises using
Aquinas’s syntax, and pushes his definitions to Aquinas’s Git repos-
itory. Aquinas takes care of the rest. Refer to the documentation
at https://www.flyn.org/projects/Aquinas for more examples of
Aquinas exercise descriptions.

Samantha the student’s view
Samantha directly interacts with two facilities provided by Aquinas:
its web server and Git repository.

Aquinas’s web server presents Samantha with a list of exercises.
The order of the list follows each exercise’s prerequisites, or Saman-
tha can elect to view the list of exercises as a graph that reflects the
prerequisites. This allows Samantha some measure of self-direction,
since it illustrates orderings that she would benefit from. Figure 2

depicts part of an exercise graph. Samantha can also review her
progress in groups of exercises called courses.

Clicking on any item in the exercise list (or any node in the
exercise graph) displays the lesson associated with the exercise.
Lessons are either self-contained, or they reference resources such
as common textbooks. In either case the lesson includes an exercise
assignment along with instructions that remind Samantha how
to clone her exercise repository and submit solutions using Git.
Samantha selects the exercise named “ROP in C”. The top half of
Figure 3 shows part of this assignment.

After cloning her exercise repository, Samantha writes a network
client that connects to the given host and port before writing a ROP
exploit to the resulting socket.

When Samantha submits her solution using Git she will find
that Aquinas grades it and provides feedback in the form of any
compiler/interpreter errors from her last submission, a pass/fail
indication, and, possibly, a hint of how to modify a failed program.
Thus Samantha’s workflow consists of selecting a lesson, reading
the lesson and completing any prescribed practice problems, using
Git to clone a repository, writing a solution, using Git to push the
solution back to Aquinas, and reviewing the result. The system
imposes a generous limit on how many times Samantha can submit
her work, primarily to protect disk space. The bottom half of Fig-
ure 3 shows what Samantha would see after Aquinas automatically
graded her submission, which omitted a #include statement.

While Aquinas can host Samantha’s code in its own Git reposi-
tory, it also allows Samantha to submit her solution through third-
party Git providers. Aquinas presently supports GitLab, but it could
be extended to allow for other options. If Samantha were to se-
lect GitLab, she could click a button on an exercise page to fork
the Aquinas repository to a private GitLab project. Another but-
ton asks Aquinas to grade anything Samantha submitted to that
project. Supporting third-party Git providers allows both students
and teachers to make use of the features present therein, such as
continuous-integration mechanisms. This allows training in indus-
try best practices to accompany education in computer science.

Alex the administrator’s view
Aquinas presently divides its facilities across four virtual machines
that Alex maintains: the Git repository and grader, the student host,
the web server, and the target host.

Git repository and grader. The Git repository and grader runs
the standard Git implementation. Each teacher and student has a
Unix account on this host, and each user’s shell is set to git-shell.
Aquinas installs hooks that perform work when new material is
pushed to a repository:

teacher: post-receive Runs aquinas-initialize-projects
when a teacher pushes a new exercise or an exercise update.
This builds out the infrastructure necessary for the exercise,
possibly performing work on all four hosts.

student: update Runs aquinas-git-update, which sets a
flag that indicates grading is in progress.

student: post-receive Runs aquinas-git-post-receive,
which executes the grader utility. Once grading is complete,
this process cleans up the flag created by the update

https://www.flyn.org/projects/Aquinas

Courses as Code: The Aquinas Learning System CSET 2022, August 8, 2022, Virtual, CA, USA

Figure 2: Aquinas displaying the range of exercises in graph
form

hook and notifies the web server by calling an HTTP API
endpoint.

Thus when Samantha pushes a solution to a Git repository, the
latter two hooks trigger a grading job. (In the case of third-party
Git providers, clicking on a button on an exercise page triggers a
grading job.) Grading jobs proceed by copying code to the student
host, possibly compiling the code, and running it according to the
exercise’s definition (recall the checks blocks described above).
Running a student submission might cause it to interact with a
service on the target host if required by the exercise definition.
In any case, the program’s outputs flow back to the Git virtual
machine, where the grader assesses them. Ultimately, the grader
publishes the result to the web server.

Aside from direct use of Git, each request made of the Git vir-
tual machine (including the programs run by Git hooks) passes
through a queuing service that serializes requests and ensures each
servicing program runs with the correct privileges. For example,
the grading Git hook runs as the student who submitted the work,
but the queuing service executes the grading process itself with the
privileges of a teacher. Aquinas manages these privileges using the
standard Unix process and permissions model. The queuing service
runs as root, but it applies the principle of least privilege when
it executes programs to service requests. The policy that governs
who can run what as whom exists as a simple-to-read table in the
queuing program’s source code.

Student host. The purpose of the student host is to run student
submissions in an isolated environment. Students cannot directly
log in to the student host, but grading processes running on their
behalf can. Though the grading process starts and ends on the Git
host, student submissions run on the student host. This involves
the grading process, running on the Git host as a teacher, using
SSH [29] to connect to the student host as the student user who
submitted the work (e.g., Samantha) and providing a set of inputs

Figure 3: Aquinas displaying a ROP assignment, with por-
tions omitted for brevity; Samantha’s submission failed due
to a missing #include

over the SSH channel to the submitted program. The firewall on the
student host prevents nearly all outgoing traffic, with the exception
of messages necessary to communicate with the target host (see
below). This aims to prevent a student from extracting secrets—such
as test inputs—out of Aquinas.

The portion of the grading process that runs on the student host
runs with the student’s privileges, so the student could subvert it.
However, the best Samantha could do is cause this portion of the
grading process to report back the correct outputs for the exercise,
given the inputs provided by the Git host. This is no different than
solving the exercise. The capability to update grades does not exist
on the student host, only the capability to send outputs back to the
Git repository for evaluation.

Most requests between the Aquinas hosts take place over SSH
connections such as with the grading process described above. We
chose SSH because of its strong cryptographic protections (includ-
ing key-based authentication) and its ability to integrate into the
Unix model of running programs. Scripts take care of deploying
SSH keys within Aquinas, although students like Samantha use a

CSET 2022, August 8, 2022, Virtual, CA, USA W. Michael Petullo

web-based interface to register the SSH key they use on their de-
velopment workstations, which is customary. The latency of these
connections provides a small cost, but the delays are not noticeable
by users in the current Aquinas deployment.

Web server. Aquinas’s web server runs a custom HTTP appli-
cation written in Go. Most requests serviced by the application
take the form of an HTTP API. A web browser capable of run-
ning WebAssembly is the most common client, but the API allows
developers to write other clients or integrate Aquinas’s services
into other platforms. The components that Aquinas provides as
WebAssembly are also written in Go.

The web server can send allowed requests using SSH to the Git
repository. For example, the web server might inquire whether an
SSH key exists on the Git host for a given student. The use of a
customized shell on the Git host restricts what the web server can
request. The Git repository processes these requests through its
queuing service, just like with its Git hooks.

Target host. The target host is similar to the student host in that it
is carefully restricted to include preventingmost outgoingmessages.
The target host runs an Internet service dæmon (inetd) that provides
the services required by network-programming exercises, including
exploit-type exercises like “ROP in C”. Each of these services is
carefully confined. As with capture-the-flag exercises, students
benefit from the use of inted-style services: such programs interact
only with standard input and standard output, so there are a wide
range of debugging and analysis approaches available. Students
can also transform the programs back into network services using
netcat.

API and allowed inputs. Table 1 summarizes the Aquinas HTTP
API and other inputs Aquinas conditionally accepts from the Inter-
net. We distribute the full documentation of the HTTP API along
with the Aquinas source code.

External requirements. Aside from the four virtual machines,
Aquinas relies on a separate mail exchange to send email, and it
relies on an external DNS server to resolve the records www, git,
user, and target to the IP addresses of the correct virtual machines.

5 EVALUATION
Aquinas served as one method used for the continuing education
of roughly 100 US Army developers. These developers ranged from
soldiers with undergraduate or graduate degrees in computer sci-
ence to soldiers who until recently had no formal training in the
practice of programming but who performed well on an aptitude
assessment. More recently, Aquinas has supported undergraduate
and graduate courses at University of Wisconsin–La Crosse, in-
cluding CS120, Software Design I (five iterations); CS356, Software
Exploitation; CS410,Open Source Development; CS455, Fundamentals
of Information Security (two iterations); and CS456, Secure Software
Development (two iterations).

CS120 serves as an introduction to programming and software
design, and it uses the Java programming language. CS356, CS455,
and CS456 exercised some of Aquinas’s more exotic features, such
as constrained software exploitation, the application of static- and
dynamic-analysis tools to software, and SELinux policy evaluation.

CSET 2022, August 8, 2022, Virtual, CA, USA W.Michael Petullo

solving the exercise. The capability to update grades does not exist
on the student host, only the capability to send outputs back to the
Git repository for evaluation.

Most requests between the Aquinas hosts take place over SSH
connections such as with the grading process described above.
We chose SSH because of its strong cryptographic protections
(including key-based authentication) and its ability to integrate into
the Unixmodel of running programs. Scripts take care of deploying
SSH keys within Aquinas, although students like Samantha use
a web-based interface to register the SSH key they use on their
developmentworkstations, which is customary. The latency of these
connections provides a small cost, but the delays are not observable
by users in the current Aquinas deployment.

Web server. Aquinas’s web server runs a custom HTTP appli-
cation written in Go. Most requests serviced by the application
take the form of an HTTP API. A web browser capable of running
WebAssembly is the most common client, but the API allows
developers to write other clients or integrate Aquinas’s services
into other platforms. The components that Aquinas provides as
WebAssembly are also written in Go.

The web server can send allowed requests using SSH to the Git
repository. For example, the web server might inquire whether
an SSH key exists on the Git host for a given student. The use of
a customized shell on the Git host restricts what the web server
can request. The Git repository processes these requests through
its queuing service, just like with its Git hooks.

Target host. The target host is similar to the student host in that it
is carefully restricted to include preventingmost outgoingmessages.
The target host runs an Internet service dæmon (inetd) that provides
the services required by network-programming exercises, including
exploit-type exercises. Each of these services is carefully confined.
As with capture-the-flag exercises, students benefit from the use
of inted-style services: such programs interact only with standard
input and standard output, so there are a wide range of debugging
and analysis approaches available. Students can also transform the
programs back into network services using netcat.

API and allowed inputs. Table 1 summarizes the Aquinas HTTP
API and other inputs Aquinas conditionally accepts from the
Internet. We distribute the full documentation of the HTTP API
along with the Aquinas source code.

External requirements. Aside from the four virtual machines,
Aquinas relies on a separate mail exchange to send email, and it
relies on an external DNS server to resolve the records www, git,
user, and target to the IP addresses of the correct virtual machines.

5 EVALUATION
Aquinas served as one method used for the continuing education
of roughly 100 US Army developers. These developers ranged
from soldiers with undergraduate or graduate degrees in computer
science to soldiers who until recently had no formal training in the
practice of programming but who performed well on an aptitude
assessment. More recently, Aquinas has supported undergraduate
and graduate courses at University of Wisconsin–La Crosse,
including CS120, Software Design I (five iterations); CS356, Software
Exploitation; CS410,Open Source Development; CS455, Fundamentals

𝑄5: Elsewhere

𝑄4: Assignments

𝑄3: Labs

𝑄2: Aquinas

𝑄1: Lectures

Strongly
disagree

Somewhat
disagree Neutral

Somewhat
agree

Strongly
agree

Figure 4: Quantitative survey results

of Information Security (two iterations); and CS456, Secure Software
Development (two iterations).

CS120 serves as an introduction to programming and software
design, and it uses the Java programming language. CS356, CS455,
and CS456 exercised some of Aquinas’s more exotic features, such
as constrained software exploitation, the application of static- and
dynamic-analysis tools to software, and SELinux policy evaluation.

We evaluated Aquinas along two dimensions: student acceptance
and resource cost. We measured student acceptance through the
use of surveys given to 40 students in CS120 and 22 students
in CS356 during the fall semester of 2021. Of the 40 students in
the introductory course, 20 were computer science or computer
engineering majors, and 20 were not.

5.1 Student Acceptance
Aquinas’s impact on learning. We asked our students whether

they strongly disagreed, somewhat disagreed, neither agreed nor
disagreed, somewhat agreed, or strongly agreed with the following
statements:
𝑄1: Lectures This course’s lectures contributed to your

understanding of the material.
𝑄2: Aquinas This course’s use of Aquinas contributed to your

understanding of the material.
𝑄3: Labs This course’s laboratory exercises contributed to your

understanding of the material.
𝑄4: Assignments This course’s homework assignments

contributed to your understanding of the material.
𝑄5: Elsewhere I would like to see Aquinas used in other courses

that permit automated feedback.
Figure 4 provides the responses to these questions. Students of

varying background viewed Aquinas favorably. Since Aquinas deliv-
ered the courses’ laboratory exercises and homework assignments,
the students seemed to indicate that Aquinas contributed to their
understanding of the course material at least as much as the lectures.
34 of 56 students (61%) would like to see Aquinas in another course
that permits its use. This was more pronounced in the software ex-
ploitation course that contained only computer sciencemajors; there
13 of 18 (72%) would like to see Aquinas used elsewhere. Only nine
students overall (16%) did not want to see Aquinas in other courses.

Immediate feedback. We asked students “Is the immediate
feedback from Aquinas helpful to you when you try to apply a new
concept?” Overall, 35 students answered in a positive way, eight

Figure 4: Quantitative survey results

We evaluated Aquinas along two dimensions: student accep-
tance and resource cost. We measured student acceptance through
the use of surveys given to 40 students in CS120 and 22 students
in CS356 during the fall semester of 2021. Of the 40 students in
the introductory course, 20 were computer science or computer
engineering majors, and 20 were not.

5.1 Student Acceptance
Aquinas’s impact on learning. We asked our students whether

they strongly disagreed, somewhat disagreed, neither agreed nor
disagreed, somewhat agreed, or strongly agreed with the following
statements:
𝑄1: Lectures This course’s lectures contributed to your under-

standing of the material.
𝑄2: Aquinas This course’s use of Aquinas contributed to your

understanding of the material.
𝑄3: Labs This course’s laboratory exercises contributed to your

understanding of the material.
𝑄4: Assignments This course’s homework assignments con-

tributed to your understanding of the material.
𝑄5: Elsewhere I would like to see Aquinas used in other courses

that permit automated feedback.
Figure 4 provides the responses to these questions. Students

of varying background viewed Aquinas favorably. Since Aquinas
delivered the courses’ laboratory exercises and homework assign-
ments, the students seemed to indicate that Aquinas contributed
to their understanding of the course material at least as much as
the lectures. 34 of 56 students (61%) would like to see Aquinas in
another course that permits its use. This was more pronounced
in the software exploitation course that contained only computer
science majors; there 13 of 18 (72%) would like to see Aquinas used
elsewhere. Only nine students overall (16%) did not want to see
Aquinas in other courses.

Immediate feedback. We asked students “Is the immediate feed-
back from Aquinas helpful to you when you try to apply a new
concept?” Overall, 35 students answered in a positive way, eight
answered negatively, and seven were neutral. Many of the students
seemed to express that Aquinas did or did not help them troubleshoot
rather than merely whether the immediate feedback was helpful.
In the former case, some students were frustrated when Aquinas
would provide no error (meaning no compile-time or syntax er-
ror) but still rate their submission as failing; better wording from

Courses as Code: The Aquinas Learning System CSET 2022, August 8, 2022, Virtual, CA, USA

Table 1: Aquinas HTTP API and other inputs

Mechanism Authenticated? Description
HTTP GET/POST/DELETE Yes Get my data, set my data, delete my account, get my assigned courses, get student rankings,

get my grades, and determine if Aquinas is currently grading a submission.
HTTP GET/POST No Get exercise list, get exercise details, wait for a grading job to complete∗, indicate a job

completed∗, register a new account, and initiate password reset.
SSH 𝑆@git/𝑆/𝐸 Yes 𝑆 is a student, and 𝐸 is the name of an exercise. Interact with student exercise using

Git/git-shell. Triggers grading hooks.
SSH 𝑇@git/𝑇/projects Yes 𝑇 is a teacher. Create or revise exercise using Git/git-shell. Triggers exercise-update hook.
SSH 𝑇@git/𝑇/records Yes 𝑇 is a teacher. Interact with student records (grades) using Git/git-shell.
SSH root@any host Yes Allows administrators to interact with Aquinas hosts using a standard shell.

∗ A UUID replaces the need for client authentication.

Aquinas might help with this. The more advanced students seemed
to indicate Aquinas was less helpful with troubleshooting, but that
was probably because their exploitation exercises required very
precise work. One beginner student stated than an IDE provides
better feedback, likely in diagnosing syntax errors; this might be
true, but it is orthogonal to the feedback that Aquinas provides.

Use of the Command Line. One of the tradeoffs described in
Courseware as Code [21] was balancing the benefit of their approach
with the tendency of some instructors to favor office-oriented doc-
ument systems and binary formats over programming tools and
markup languages. There the benefit of things like textual revi-
sion control and continuous integration outweighed the cost, and
the organization was willing to direct that everyone adopt the
everything-as-code approach. Aquinas has a reflection of this in its
preference of command-line tools over IDEs and in its use of Git.
Will students who are new to the practice of programming accept
this?

We asked students to “describe how using the command line
impacted your learning.” Out of 28 qualitative responses from an
introductory course, 20 were positive, five were neutral, and three
were negative. The more advanced course had stronger results:
fifteen of sixteen responses were positive, and one was neutral.

The good, the bad, and the ugly. We asked 𝑄6: “What aspect of
Aquinas did you appreciate?” and 𝑄7: “What changes to Aquinas
might have helped you learn?” Some of the more illustrative re-
sponses follow; an asterisk (∗) indicates a response from a CS120
student, and a dagger (†) indicates a response from amore advanced
CS356 student.

𝑄6 “The very detailed descriptions for the problems and the
fact that it uses a repository to submit work makes me feel
more secure then sending code over email and having it
potentially not be received by the instructor.”†

𝑄6 “Feedback sometimes if you failed. It hosts a bunch of mate-
rial too so you can try some of them outside of class.”†

𝑄6 “I love that it uses the git workflow to upload assignments
because it makes it easy to save incremental progress and
makes uploading files easier than any other course uses.”†

𝑄6 “I liked that there are lessons on each assignment to explain
what is going on - each assignment is self-contained in a way,
which is nice. I also like the ability to do other assignments on

Aquinas and the ability to know pre-reqs for each assignment.
The graph/tree visualization is cool as well. Being able to see
course grades and standing in the class is also nice.”†

𝑄6 “That we had to learn basic git commands.”∗
𝑄6 “I like the use of the command prompt to learn how to push

to Aquinas”∗
𝑄6 “The use of git was really cool to see in a 100 level cs class.”∗
𝑄7 “Improvements to the auto-grading system such as providing

error traceback and the input Aquinas ran that caused a pro-
gram to fail would have been extremely helpful in debugging
homework assignments.”†

𝑄7 “Having more helpful tips when a ‘fail’ grade appears”∗

Variations on the last response were the most popular answer to
𝑄7. In some cases, this could be addressed by writing more hints.
The compare-type checks described below in §6 should also help.
As with Clifton’s work [6], we found that a number of beginner
students found the use of Git beneficial.

5.2 Resource Cost
Storage space. Aquinas’s storage-space cost is small. The system

partitions of the web server, Git repository and grader, and target
host virtual machines require less than 100 MB each. The user
virtual machine’s system partition is larger due to its programming-
language build environments: compilers, interpreters, and support-
ing libraries costs around 2 GB. The partitions dedicated to student
and exercise data on the web server and Git repositories must scale
with the number of students and exercises.

Memory and processor use. Aquinas’s cost in memory and pro-
cessor use is light. The git and user virtual machines require 1,024
and 2,048MB of memory, respectively, to host large Git repositories
and execute development tools and simulation environments. The
web server and target host run with 256 MB and 128 MB of memory,
respectively. Each virtual machine requires only one CPU core; the
most processor-intensive work performed (aside from time-limited
infinite loops in student code) is running various compilers.

Sophistication of artifact. Aquinas is presently comprised of 8,657
lines of Go, 1,311 lines of JavaScript, 901 lines of Bourne shell scripts,
and 64 lines of C, not including comments or empty lines. This does
not include the code in exercises, some of which include the source
code of other open-source projects.

CSET 2022, August 8, 2022, Virtual, CA, USA W. Michael PetulloCSET 2022, August 8, 2022, Virtual, CA, USA W.Michael Petullo

"checks ": [
{

"kind": "compare",
"parameters ": {

"command ": "./ guess3",
"reference ": "guess3C.c,
"gencmdargs ": "generator -cmdargs -guess3.c",
"genstdin ": "generator -stdin -guess3.c"

} . . .

Figure 5: A fragment from the definition of an Aquinas
exercise that uses a compare-type check

Sophistication of artifact. Aquinas is presently comprised of 8,657
lines of Go, 1,311 lines of JavaScript, 901 lines of Bourne shell scripts,
and 64 lines of C, not including comments or empty lines. This does
not include the code in exercises, some of which include the source
code of other open-source projects.

6 POST-EVALUATIONWORK
The automated grading techniques Aquinas supported during the
semesters we evaluated required secret test inputs. If such test
data were revealed, then students could simply write programs
that satisfied the grading script, leaving the set of other inputs
unhandled. This meant that a small mistake would leave student
work unable to meet the grader’s requirement, yet Aquinas could
not safely reveal the precise edge case that caused their program
to fail. A number of students brought this up in our surveys.

We have implemented an alternative grader that can safely
reveal its test inputs, which we call compare-type checks. Instead of
defining static inputs and outputs, a teacher can define a reference
solution and an input generator, with the latter generating random
but well-formed inputs. Compare-type checks present generated
inputs both to the reference implementation and the student’s
solution, and note whether the results are the same for both. A
student who submits a failing solution can thus receive the input
that caused the failure, as Aquinas will generate another for the next
check. Although we have not yet evaluated compare-type checks
during a semester, we suspect theywill ease student troubleshooting.
Not all exercises are well-suited for compare-type checks, but we
have already added them to 15 introductory exercises.

Figure 5 provides an exercise definition fragment that defines
a compare-type check for a too-high/too-low guessing game. The
corresponding file guess3C.c contains the teacher’s solution;
generator-cmdargs-guess3.c generates the expected command-
line arguments: a single random integer representing a target value;
and generator-stdin-guess3.c generates the expected standard
input: three random integer guesses. Teachers can combine compare-
type checks with basic checks. Running randomized compare-type
checks repeatedly, followed by basic checks that check boundary
conditions and provide clear hints seems to be a good balance.

7 FUTUREWORK
This section lays out the improvements planned for Aquinas. Work
during each semester involves addressing student-found issues, and
major improvements take place between semesters.

Scalability. Part of making Aquinas scalable means rebuilding
Aquinas to exist as a cloud application, as defined by The USNational
Institute of Standards and Technology (NIST) Definition of Cloud
Computing [16]. Cloud computing provides for on-demand self
service, broad network access, resource pooling, rapid elasticity,
and measured service.

An efficient, scalable implementation of Aquinas requires that
it support deployment as either virtual machines or containers.
Container support will require the reimplementation of some of
Aquinas’s administrative scripts, which are responsible for grading
and other features. The result will be an architecture that can be
hosted at a lower cost and in more environments.

We aim to lighten Aquinas’ dependence on the local computer of
its students and teachers. Infrastructure can become a burden, even
when using virtual machines. Technology moves quickly, and prob-
lems arise on local machines because of this advance—for example,
consider Apple’s adoption of their M1 processor, which disrupted
the use of the open-source VirtualBox virtualization product on
Apple computers. Hosting shell accounts and X2Go-based [19]
access within Aquinas would alleviate the problem of configuring
student workstations.We also plan to deploy an instance of Aquinas
suitable for sharing with others under a software-as-a-service
model, alleviating the difficulty of managing private infrastructure.

Vulnerability randomization. Exploiting a vulnerability often in-
volves crafting a careful input, but it is easy to write an exploitive
program if the required input is already known. On the other hand,
preparinganexploit exercise comesat ahighcost due to theprecision
required. Techniques that would allowAquinas to generate per-user
binaries thatminimize the reusability of exploits interest us.Other re-
searchers have proposed per-student exercises; for example, Carlisle
pointed out that CyberStakes would sometimes vary problems for
each student [3], and Stricklan described techniques for building
binary-diverse exercises for a reverse-engineering course [26].

Additional exercises. We have an interest in writing many
more exercises for Aquinas. Beyond the use for training and
undergraduate and graduate courses, we envision the use of Aquinas
as the foundation for outreach to middle- and high-school students.
We also hope to add support for more programming languages, such
as Rust and JavaScript.

Support for writing exercises. Aquinas already provides a syntax
that eases defining exercises, to include necessary infrastructure
support. However, writing exercises is presently a task that teachers
executeoutsideofAquinas,using traditional tools suchas texteditors.
Aquinas takes over when the teacher performs a Git push. Aquinas
could support defining exercises fromwithin a browser-based editor.

Robustness and reliability. As a research prototype, Aquinas could
be made more robust and reliable in a number of places. We hope to
executea full reviewof theAquinascodebase, and improveAquinas’s
implementation so that it is suitable for use by other researchers and
teachers. This work could also provide the basis for course exercises.

Controlled access to progress reports. Aquinas currently operates
under an flat authentication model where any teacher can observe
thework of any student in the system. Aquinas should follow amore
fine-grained authentication model. For example, the student captain
of a competitive capture-the-flag teammight want to observe the

Figure 5: A fragment from the definition of an Aquinas exer-
cise that uses a compare-type check

6 POST-EVALUATIONWORK
The automated grading techniques Aquinas supported during the
semesters we evaluated required secret test inputs. If such test
data were revealed, then students could simply write programs
that satisfied the grading script, leaving the set of other inputs
unhandled. This meant that a small mistake would leave student
work unable to meet the grader’s requirement, yet Aquinas could
not safely reveal the precise edge case that caused their program to
fail. A number of students brought this up in our surveys.

We have implemented an alternative grader that can safely re-
veal its test inputs, which we call compare-type checks. Instead of
defining static inputs and outputs, a teacher can define a reference
solution and an input generator, with the latter generating random
but well-formed inputs. Compare-type checks present generated
inputs both to the reference implementation and the student’s solu-
tion, and note whether the results are the same for both. A student
who submits a failing solution can thus receive the input that caused
the failure, as Aquinas will generate another for the next check.
Although we have not yet evaluated compare-type checks during a
semester, we suspect they will ease student troubleshooting. Not
all exercises are well-suited for compare-type checks, but we have
already added them to 15 introductory exercises.

Figure 5 provides an exercise definition fragment that defines
a compare-type check for a too-high/too-low guessing game. The
corresponding file guess3C.c contains the teacher’s solution;
generator-cmdargs-guess3.c generates the expected command-
line arguments: a single random integer representing a target
value; and generator-stdin-guess3.c generates the expected
standard input: three random integer guesses. Teachers can com-
bine compare-type checks with basic checks. Running randomized
compare-type checks repeatedly, followed by basic checks that
check boundary conditions and provide clear hints seems to be a
good balance.

7 FUTUREWORK
This section lays out the improvements planned for Aquinas. Work
during each semester involves addressing student-found issues, and
major improvements take place between semesters.

Scalability. Part of making Aquinas scalable means rebuilding
Aquinas to exist as a cloud application, as defined by The USNational
Institute of Standards and Technology (NIST) Definition of Cloud
Computing [16]. Cloud computing provides for on-demand self

service, broad network access, resource pooling, rapid elasticity,
and measured service.

An efficient, scalable implementation of Aquinas requires that
it support deployment as either virtual machines or containers.
Container support will require the reimplementation of some of
Aquinas’s administrative scripts, which are responsible for grading
and other features. The result will be an architecture that can be
hosted at a lower cost and in more environments.

We aim to lighten Aquinas’ dependence on the local computer of
its students and teachers. Infrastructure can become a burden, even
when using virtual machines. Technology moves quickly, and prob-
lems arise on local machines because of this advance—for example,
consider Apple’s adoption of their M1 processor, which disrupted
the use of the open-source VirtualBox virtualization product on Ap-
ple computers. Hosting shell accounts and X2Go-based [19] access
within Aquinas would alleviate the problem of configuring student
workstations. We also plan to deploy an instance of Aquinas suit-
able for sharing with others under a software-as-a-service model,
alleviating the difficulty of managing private infrastructure.

Vulnerability randomization. Exploiting a vulnerability often in-
volves crafting a careful input, but it is easy to write an exploitive
program if the required input is already known. On the other hand,
preparing an exploit exercise comes at a high cost due to the pre-
cision required. Techniques that would allow Aquinas to generate
per-user binaries thatminimize the reusability of exploits interest us.
Other researchers have proposed per-student exercises; for example,
Carlisle pointed out that CyberStakes would sometimes vary prob-
lems for each student [3], and Stricklan described techniques for
building binary-diverse exercises for a reverse-engineering course
[26].

Additional exercises. We have an interest in writing many more
exercises for Aquinas. Beyond the use for training and undergrad-
uate and graduate courses, we envision the use of Aquinas as the
foundation for outreach to middle- and high-school students. We
also hope to add support for more programming languages, such
as Rust and JavaScript.

Support for writing exercises. Aquinas already provides a syntax
that eases defining exercises, to include necessary infrastructure
support. However, writing exercises is presently a task that teachers
execute outside of Aquinas, using traditional tools such as text
editors. Aquinas takes over when the teacher performs a Git push.
Aquinas could support defining exercises from within a browser-
based editor.

Robustness and reliability. As a research prototype, Aquinas could
be made more robust and reliable in a number of places. We hope
to execute a full review of the Aquinas code base, and improve
Aquinas’s implementation so that it is suitable for use by other
researchers and teachers. This work could also provide the basis
for course exercises.

Controlled access to progress reports. Aquinas currently operates
under an flat authentication model where any teacher can observe
thework of any student in the system. Aquinas should follow amore
fine-grained authentication model. For example, the student captain
of a competitive capture-the-flag team might want to observe the

Courses as Code: The Aquinas Learning System CSET 2022, August 8, 2022, Virtual, CA, USA

progress of the team towards solving a set of exercises; Aquinas
should permit this without allowing the captain to observe other
work. This will be required if a single hosted instance of Aquinas is
to support a number of different institutions.

Aquinas has already impacted other open-source projects. Work
on Aquinas led to a fix for the Dropbear SSH server concerning
exit codes [17], the addition of SELinux as a feature supported by
OpenWrt [9], an improvement to the username sizes supported
by Dropbear [18], improvements to the LATEXML converter, and a
number of packaging improvements for OpenWrt.

8 CONCLUSION
Aquinas aims to maximally apply an everything-as-code approach
to teaching the practice of programming and exploit development
using hands-on exercises. Aquinas’s use of machine-readable exer-
cise definitions helps teachers define a body of rigorous and robust
student exercises. We provided evidence that the consistency pro-
vided by Aquinas helps even beginner students make use of the
command line and Git, further aiding course management. Aquinas
has already served as a tool in five undergraduate and graduate
courses, and we have plans to further its use. We plan to continue
to develop Aquinas to make it easier to use at other institutions.
The source code and documentation for Aquinas is available at
https://www.flyn.org/projects/Aquinas, and the canonical instance
of Aquinas is at https://www.aquinas.dev/.

ACKNOWLEDGMENTS
Chris Apsey gave a lecture on everything as code in 2017, inspiring
early thoughts about Aquinas. Jessie Lass applied Chris’s insights to
the practice of programming in the CSD-D, and these experiences
further solidified early ideas. A number of colleagues provided
direct help with the early work on Aquinas, including Will Brattain,
Thomas Dignan, Jakob Kaivo, Jessie Lass, and Christian Sharpsten.

REFERENCES
[1] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When

Good Instructions Go Bad: Generalizing Return-oriented Programming to RISC.
In Proceedings of the 15th ACM Conference on Computer and Communications
Security (Alexandria, Virginia, USA) (CCS ’08). ACM, New York, New York, USA,
27–38.

[2] Elie Bursztein, Baptiste Gourdin, Celine Fabry, Jason Bau, Gustav Rydstedt, Hristo
Bojinov, Dan Boneh, and John C. Mitchell. 2010. Webseclab security education
workbench. In Proceedings of the 3rd Workshop on Cyber Security Experimentation
and Test (Washington, DC, USA) (CSET ’10). USENIX Association, Berkeley,
California, USA.

[3] Martin Carlisle, Michael Chiaramonte, and David Caswell. 2015. Using CTFs for
an Undergraduate Cyber Education. In Proceedings of the 2015 USENIX Summit on
Gaming, Games, and Gamification in Security Education (Washington, DC, USA).
USENIX Association, Berkeley, California, USA.

[4] Kevin Chung. 2017. Lowering the Barriers to Capture The Flag Administration
and Participation. In Proceedings of the 2017 USENIX Workshop on Advances in
Security Education (Vancouver, British Columbia, Canada). USENIX Association,
Berkeley, California, USA.

[5] Kevin Chung and Julian Cohen. 2014. Learning Obstacles in the Capture The Flag
Model. In Proceedings of the 2014 USENIX Summit on Gaming, Games, and Gami-
fication in Security Education (San Diego, California, USA). USENIX Association,
Berkeley, California, USA.

[6] Curtis Clifton, Lisa C. Kaczmarczyk, and Michael Mrozek. 2007. Subverting the
Fundamentals Sequence: Using Version Control to Enhance Course Management.
In Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (Covington, Kentucky, USA) (SIGCSE ’07). Association for Computing
Machinery, New York, New York, USA, 86–90.

[7] Crispin Cowan, Seth Arnold, Steve Beattie, Chris Wright, and John Viega. 2003.
Defcon Capture the Flag: defending vulnerable code from intense attack. In Pro-
ceedings DARPA Information Survivability Conference and Exposition (Washington,
DC, USA), Vol. 1. IEEE, New York, New York, USA, 120–129.

[8] Wenliang Du and Ronghua Wang. 2008. SEED: A Suite of Instructional Labo-
ratories for Computer Security Education. Journal on Educational Resources in
Computing 8, 1, Article 3 (March 2008), 24 pages.

[9] Jake Edge. 2020. OpenWrt and SELinux. LWN (Sept. 2020). https://lwn.net/
Articles/832876/ [Accessed January 25, 2021].

[10] Robert Fanelli and T.J. O’Connor. 2010. Experiences with practice-focused un-
dergraduate security education. In Proceedings of the 3rd Workshop on Cyber
Security Experimentation and Test (Washington, DC, USA) (CSET ’10). USENIX
Association, Berkeley, California, USA.

[11] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visu-
alization for CS Education. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association
for Computing Machinery, New York, New York, USA, 579–584.

[12] Philip J. Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring for
Computer Programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software and Technology (Charlotte, North Carolina, USA) (UIST
’15). Association for Computing Machinery, New York, New York, USA, 599–608.

[13] Philip J. Guo, Jeffery White, and Renan Zanelatto. 2015. Codechella: Multi-user
program visualizations for real-time tutoring and collaborative learning. In 2015
IEEE Symposium on Visual Languages and Human-Centric Computing (Atlanta,
Georgia, USA) (VL/HCC ’15). IEEE, New York, New York, USA, 79–87.

[14] Gordon Hunter, David Livingstone, Paul Neve, and Graham Alsop. 2013. Learn
Programming++: The Design, Implementation and Deployment of an Intelligent
Environment for the Teaching and Learning of Computer Programming. In
Proceedings of the 9th International Conference on Intelligent Environments (Athens,
Greece). IEEE, New York, New York, USA, 129–136.

[15] Kief Morris. 2016. Infrastructure as Code: Managing Servers in the Cloud (1st ed.).
O’Reilly Media, Inc.

[16] Mell Peter and Grance Timothy. 2011. NIST Special Publication 800–145. https:
//nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf [Ac-
cessed July 9, 2020].

[17] W. Michael Petullo and Matt Johnston. 2018. Strange behaviour [sic] surrounding
“ssh -T ...” and non-zero exit. Mailing list thread: https://lists.ucc.gu.uwa.edu.au/
pipermail/dropbear/2018q4/002119.html [Accessed January 25, 2021].

[18] W. Michael Petullo and Matt Johnston. 2019. MAX_USERNAME_LEN set too low.
Mailing list thread: https://lists.ucc.gu.uwa.edu.au/pipermail/dropbear/2019q1/
002146.html [Accessed January 25, 2021].

[19] The X2Go Project. 2022. X2Go. https://www.x2go.org/ [Accessed Jan 2, 2022].
[20] Eric S. Raymond and Tim O’Reilly. 1999. The Cathedral and the Bazaar (1st ed.).

O’Reilly & Associates, Inc., Boston, Massachusetts, USA.
[21] Julianna M. Rodriguez, Benjamin J. Allison, Christopher W. Apsey, and Todd M.

Boudreau. 2020. Courseware as Code: Instituting Agile Courseware Collaboration.
IEEE Security & Privacy 18, 6 (2020), 59–62.

[22] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L. Mazurek, and
Piotr Mardziel. 2016. Build It, Break It, Fix It: Contesting Secure Development. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, New York, USA, 690–703.

[23] Inc. Ryzac. 2022. Codecademy. https://www.codecademy.com/ [Accessed Mar
23, 2022].

[24] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (Alexandria, Virginia, USA)
(CCS ’07). ACM, New York, New York, USA, 552–561.

[25] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing SELinux
as a Linux Security Module. Report #01-043. NAI Labs. Revised April 2002.

[26] Christopher Stricklan and TJ OConnor. 2021. Towards Binary Diversified Chal-
lenges For A Hands-On Reverse Engineering Course (ITiCSE ’21). Associa-
tion for Computing Machinery, New York, New York, USA, 102–107. https:
//doi.org/10.1145/3430665.3456358

[27] Erik Trickel, Francesco Disperati, Eric Gustafson, Faezeh Kalantari, Mike Mabey,
Naveen Tiwari, Yeganeh Safaei, Adam Doupé, and Giovanni Vigna. 2017. Shell
We Play a Game? CTF-as-a-service for Security Education. In Proceedings of the
2017 USENIX Workshop on Advances in Security Education (Vancouver, British
Columbia, Canada). USENIX Association, Berkeley, California, USA.

[28] JosephWerther, Michael Zhivich, Tim Leek, and Nickolai Zeldovich. 2011. Experi-
ences In Cyber Security Education: TheMIT Lincoln Laboratory Capture-the-Flag
Exercise. In Proceedings of the 4thWorkshop on Cyber Security Experimentation and
Test (San Francisco, California, USA) (CSET ’11). USENIX Association, Berkeley,
California, USA.

[29] Tatu Ylonen. 1996. SSH—Secure Login Connections over the Internet. In Proceed-
ings of the 6th USENIX Security Symposium (San Jose, California, USA). USENIX
Association, Berkeley, California, USA, 37–42.

https://www.flyn.org/projects/Aquinas
https://www.aquinas.dev/
https://lwn.net/Articles/832876/
https://lwn.net/Articles/832876/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://lists.ucc.gu.uwa.edu.au/pipermail/dropbear/2018q4/002119.html
https://lists.ucc.gu.uwa.edu.au/pipermail/dropbear/2018q4/002119.html
https://lists.ucc.gu.uwa.edu.au/pipermail/dropbear/2019q1/002146.html
https://lists.ucc.gu.uwa.edu.au/pipermail/dropbear/2019q1/002146.html
https://www.x2go.org/
https://www.codecademy.com/
https://doi.org/10.1145/3430665.3456358
https://doi.org/10.1145/3430665.3456358

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Design and Implementation
	5 Evaluation
	5.1 Student Acceptance
	5.2 Resource Cost

	6 Post-Evaluation Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

