
The Industrial Age of Hacking
Tim Nosco

United States Army
Jared Ziegler

National Security Agency
Zechariah Clark

United States Navy

Davy Marrero
United States Navy

Todd Finkler
United States Air Force

Andrew Barbarello
United States Navy

W. Michael Petullo
United States Army

Abstract
There is a cognitive bias in the hacker community to select
a piece of software and invest significant human resources
into finding bugs in that software without any prior indi-
cation of success. We label this strategy depth-first search
and propose an alternative: breadth-first search. In breadth-
first search, humans perform minimal work to enable au-
tomated analysis on a range of targets before committing
additional time and effort to research any particular one.

We present a repeatable human study that leverages
teams of varying skill while using automation to the great-
est extent possible. Our goal is a process that is effective
at finding bugs; has a clear plan for the growth, coaching,
and efficient use of team members; and supports measur-
able, incremental progress. We derive an assembly-line
process that improves on what was once intricate, manual
work. Our work provides evidence that the breadth-first
approach increases the effectiveness of teams.

1 Introduction

Can we build a better vulnerability discovery process?
Many researchers have proposed tools that aim to aid
human work, including approaches that apply symbolic
execution, fuzzing, taint tracing, and emulation to the
problem of bug finding. These techniques automate bug
finding in the sense that, with some up-front cost, they
carry out a search over time of software states with little
need for human intervention. The goal of each refinement
or invention is to increase the effectiveness of tools when
they are used on real software. Yet finding vulnerabilities
at scale still appears out of reach, partly due to the human
effort required to effectively setup automated tools.

Our work focuses on human processes that build on
a foundation of automation. We choose to focus on au-
tonomous technologies (as opposed to other vulnerability
discovery techniques such as static analysis) because
we view them as holding great promise for scalability.
However, we by no means discourage the use of other
techniques, either alone or in connection with autonomy.

We propose a minor change to Votipka’s process [40]
by creating a deliberate software selection step we call

targeting. We encourage novice hackers to perform
a breadth-first search of potential software targets to
accomplish only the essential-but-preliminary tasks that
allow automated analysis. We suggest bringing in more
experienced hackers to perform a deeper but more costly
analysis of select software only once novices have tried
and failed with automation. Our approach focuses the
most experienced practitioners on hard problems by
delegating other work to hackers with less experience;
they, in turn, generate work artifacts that are useful for
informing more advanced analysis. Due to the volume of
targets, all hackers have the opportunity to select software
suitable for their skill level, and team members have a
clear path for knowledge growth and coaching.

This paper describes our vulnerability-discovery
process along with the repeatable experiment that we
used to assess it. We found substantial evidence to claim a
breadth-first search makes a superior targeting strategy in
the presence of automation. We also measured significant
improvement in the confidence of subjects who applied
our process to a vulnerability-discovery campaign.

After surveying related work in §2, we introduce our
process in §3. §3.1 describes a depth-first strategy, and
§3.2 describes our breadth-first strategy. §4 lays out the
design and execution of our experiment: the application
of our process with two teams of hackers applying two
strategies during two successive weeks. §5 describes our
results, and §6 concludes.

2 Related work

Votipka, et al. studied the interplay between testers, who
investigate software prior to release and hackers, who
investigate software after release. They derived from their
study a common vulnerability discovery process, which
we build on here [40, §V].

Manès, et al. provide a survey of many of the techniques
found in fuzzing tools [21]. For example, Mayhem [5]
and Driller [36] address the path explosion problem
in symbolic execution. Klees, et al. survey the fuzzing
literature to comment on the required procedure for good
scientific and evidence based research [20].

1



Automation
Apprentice
Journeyman

Master

Sk
ill

le
ve

l

C
oa

ch
in

g

Figure 1: Practitioners, divided into apprentices, journey-
men, and master hackers; each represents a higher level
of skill and experience, and each mentors the level below

Avgerinos, et al. mention analysis at scale, specifically
how scaling analysis to thousands of software artifacts
makes any per-program manual labor impractical [1, §6.4].
Babic, et al. discuss a method to harness library code auto-
matically and at great scale [2]. Sawilla and Ou proposed
ASSETRANK, an algorithm that reveals the importance of
vulnerabilities present in a system [31]. The strategy we
propose builds on OSS-Fuzz’s idea of passing indicators
of vulnerability to human experts for remediation [32].

In this study, we extend Votipka’s vulnerability
discovery process, use modern tools referenced by Manès,
accept some amount of manual labor to make finding bugs
in real software artifacts tractable, and use statistical tests
to extrapolate our observations to the hacker community.

3 Vulnerability discovery process

We aim to discover ways to increase the effectiveness of
teams built on a foundation of automation (i.e., fuzzing
and related technologies) whose goal is to find bugs in soft-
ware. Most interesting to us are bugs exploitable in a way
that circumvents a system’s security. We consider both
published and novel bugs, focusing on employed software
where vulnerabilities—published (n-day) or not (0-day)—
are the main concern. Here we describe our vulnerability
discovery process, based on Votikpa’s work. We also intro-
duce distinct two strategies that our experiment compared.

Observations led us to divide bug finders into three
categories: apprentices, journeymen, and masters, as
depicted in Figure 1. Collectively, we refer to these three
groups as hackers. Maximizing the productivity of each
skill level while enabling a progression from apprentice
to master over time was a key motivator to our process.

An apprentice hacker has a general computing
background and a basic understanding of how to apply
some number of automated software analysis tools. At the
core of an apprentice’s tool set are fuzzers. Apprentices
have limited experience in modifying software, and they
do not yet have a command of the internal workings of
the various build systems used for software development.

A journeyman hacker adds the ability to manipulate a
program to work with his tools. A journeyman can modify

source code or use binary patching to deal with obstacles
that thwart fuzzing, such as checksums, encryption, or
non-deterministic functionality. A journeyman routinely
modifies targets to expose their attack surfaces.

The highest skill level, master, adds the ability to
manipulate or create tools in order to better investigate a
target program. Many existing tools were written by mas-
ters in need of a specialized approach to a particular piece
or class of software. We will use Alice as an apprentice,
James as a journeyman, and Meghan as a master hacker.

Other actors include leaders, who make targeting
decisions based on the work of hackers; analysts, who cor-
relate technical work with other resources such as blogs
and Common Vulnerabilities and Exposures (CVE); and
system support personnel, who manage automation jobs
and computing resources. Motivated by our observations
of the skill levels that comprise vulnerability-discovery
teams, we added a targeting step to Votipka’s vulnerability
discovery process [40], as shown in Figure 2.

Targeting Targeting selects software for investigation.
The term target is common among bug finders because
software targets are subject to an unusually careful
inspection that resembles an attack [28]. The goal of the
targeting phase is to divide a complex system or group
of complex systems into targets that can be individually
studied in later phases of the vulnerability-discovery
process. Even monolithic software artifacts decompose
into multiple targets: for example, a browser decomposes
into media libraries, TLS and networking libraries, an
HTML/CSS renderer, a JavaScript engine, and so on.
Experience shows that many or most teams have multiple
or many targets under consideration.

Only cursory information focused on how to perform
this division should be collected during the targeting
phase. Examples include the pervasiveness of existing
security research focused on the target; the availability
of target source code, bug trackers, and public developer
forums; and the impact of finding a vulnerability in the
target. The availability of the target itself; its dependencies
(e.g., software, hardware, and supporting resources);
and the tools necessary to interact with the target—both
automatically and manually—are other considerations.

The predicted Profit of a vulnerability-finding effort is
proportional to the Likelihood and V alue of success and
inversely proportional to the projected T ime investment
and required Skill level.

P=(L×V )−(T×S)

This model guides targeting and subsequent decisions
about how to proceed while maximizing return on

2



Targeting Information
gathering

Program
understanding

Attack surface
analysis

Automated
exploration

Vulnerability
recognitionReporting

No

No

Yes
Yes

Leader: Validates
and prioritizes
queue of targets.

Analyst: Reviews
CVEs. Hacker:
Gathers code and
reviews project.

Hacker: Builds and executes program. Reviews
features. Enumerates components and I/O channels.
Writes fuzzing harness. Labels lines of research as
suitable for apprentice, journeyman, or master.

System Support:
Manages fuzzing
jobs and computing
resources.

Leader: Determines bug’s
value and likelihood;
compares against projected
investment.

Hacker: Performs root-cause analysis to
produce a report on the likelihood of poten-
tial payoff and projected time investment
to achieve payoff. Documents results.

Start

Worth-
while?

Obstacle?

Stop

. . .

. . .

. . .

* † †

† †

†

†

Figure 2: Our vulnerability-discovery process adds targeting (*) to the steps of Votipka, et al. (†) [40, §V].

investment.
Not all hackers are created equal, and building expertise

in software security can take years of effort, experience,
and coaching [28]. A targeting strategy ought to boost
overall productivity across all skill levels. We wanted to
derive a sufficiently large number of software targets to
allow hackers of varying skill levels to select work that
aligns with both their ability and interest.

Ultimately, we arrived at a strategy that coupled the
freedom of target choice with a “fail fast” team culture
and an incentive for producing rapid results. Thus our tar-
geting phase allows teams to self-organize, and it enables
a more effective use of journeyman- and master-level
hackers’ scarce time. We describe a depth-first strategy
in §3.1 and our favored breadth-first strategy in §3.2.

Information gathering The first steps individual hack-
ers and analysts take during the vulnerability-discovery
process is to collect additional information about the
target, this time with an eye toward decision making
during later phases. Key among this information are
general details about the target’s development, prevalence,
and known current or previous defects, along with any
security research already complete [40].

Existing analysis can quickly advance the understand-
ing of obstacles, along with the methods of overcoming
them. For instance, work to fuzz the OpenSSH dæ-
mon [26] describes eleven non-trivial techniques to
harness targets for fuzzing. When considering a team of
mixed proficiency, descriptive guides such as this allow a

novice to begin work that would otherwise require a more
experienced hacker.

Scenario A Alice begins investigating a piece of soft-
ware that provides an NTP service. She notes the ver-
sion in common use, reviews the National Vulnerabil-
ity Database for known vulnerabilities, and records the
primary programming language used in the project.

Program understanding Hackers next focus on
gaining knowledge of the target’s operation and design.
Of interest is how the target is used as it was intended,
more advanced use cases and configuration options, and
the general design of the target software. Information
gathered during this phase can come from documentation,
source code, online forums, users, developers [40], and
other sources. Program understanding and the next phase,
attack surface analysis, make up an iterative cycle within
the vulnerability discovery process; Figure 2 illustrates
this with the Obstacle decision point.

Scenario A (cont.) Alice installs the NTP service by
downloading its source code from an online repository
and running ./configure; make. She references the
usage instructions to interact with the software.
Scenario B Working on a separate project, James
compiles a browser after reading preliminary notes by
Alice. This takes some work as his Linux distribution
did not provide a required library. He identifies the
browser’s JavaScript engine and HTML renderer, and
he notes the libraries used to decode various media

3



formats. James also notes that the default build makes
use of Address Space Layout Randomization (ASLR),
non-executable stacks, and stack canaries.

Attack surface analysis Investigating a program’s at-
tack surface involves devising ways to provide input to
portions of the target program. In many cases, this takes
the form of a fuzzing harness, also known as a driver appli-
cation [21], which directs the inputs a fuzzer generates to a
portion of the program’s attack surface. The practical exe-
cution of this phase diverges among hackers of varied skill.

Our process asks apprentices to apply known tools until
an obstacle prevents them from further process. Their strat-
egy is to give up quickly when progress stops, document
their successful work, and move on to the next target.

Journeymen consume the documentation produced
by the apprentices, allowing them to immediately
apply higher-order analysis and continue the program
understanding–attack surface analysis cycle.

Projects that reach the master level either are ex-
ceptionally important or have exceeded other hackers’
ability to exploit despite clear indications of buggy
behavior. A master should always enter the program
understanding–attack surface analysis cycle with a
plethora of documentation and other products generated
by apprentices and journeymen. The master’s time is thus
spent doing tasks only a master could perform.

Some literature suggests that to even begin vulnerability
discovery, a person must already have the skill we describe
as a master’s: “Although fuzzing tools are more common,
people typically do not use off-the-shelf tools; they prefer
making their own fuzzers . . . [11]” We found counterex-
amples where apprentices and journeymen were able to
progress through every phase of vulnerability discovery.
In other cases, they provided clear value to later work by
a master hacker. In either case, our process aims to max-
imize the contributions of less experienced hackers while
making the employment of master hackers more efficient.

Scenario A (cont.) Alice learns the types of inputs her
target accepts. These include input through network
sockets as well as configuration files the server reads
when started. The fuzzing tool she is familiar with
doesn’t support network fuzzing, so she makes a note
for a future analyst to try network fuzzing. However,
she knows how to start a fuzzing run based on file input.
Scenario B (cont.) James writes a fuzzing harness for
the browser’s more complicated media libraries, and
he packages his work using a Dockerfile. Alice helps,
as she had not yet learned how to use Docker.

Automated exploration Once a team learns how to
manipulate the inputs of a program, it iteratively performs
these manipulations to enumerate as much functionality
of the program as possible. This maximizes the chance
of finding a vulnerable condition. While “sometimes, a
‘lucky’ run-time failure leads to a vulnerability [11],” we
focus most in this phase on testing the target program in a
fuzzer using the harnesses produced by the previous phase.
In order to make results repeatable, our team standardized
the output of the attack surface phase to be a Dockerfile [3]
that combined the target program and its fuzz harness.

A hacker’s proficiency, along with a consideration of
the suitability of a given target determines the choice
of a fuzzer. The effectiveness of a fuzzer includes the
efficiency of harnessing the target and features (such as
address sanitization, scalability, speed, and so on). Differ-
ent fuzzers favor different types of targets. As an example,
LibFuzzer aids in the work of writing a fuzz harness for
a library, whereas American Fuzzy Lop (AFL) enables a
hacker to begin fuzzing quickly given a binary target that
reads its input from a file or the standard input stream.

Scenario A (cont.) Alice starts a fuzzing run on the
unmodified NTP program with configuration files as
the fuzzed input.
Scenario B (cont.) James deploys his browser media
handling harnesses for fuzzing. They both work on
other targets while the fuzzers run.

Vulnerability recognition Hackers who discover bugs
while iterating through the process must confirm whether
the bugs are vulnerabilities. A vulnerability exists when
a bug is proven to be exploitable by an attacker [34].
This can be as simple as running the target program with
the crashing input identified in the previous phase, or as
complicated as setting up a complex system to observe
the real-world effects of certain input. Automation in this
phase might be necessary to balance the amount of human
time that is required to review results, especially when
a multitude of program crashes are discovered.

Scenario A (cont.) Alice begins another target.
Scenario B (cont.) Fuzzing discovers six inputs that
cause the targeted browser to crash. James is not able
to exploit these bugs, so Meghan takes on the task.
James shifts his focus to fuzzing the browser’s use of
Transport Layer Security (TLS).

Reporting Finally, the hacker who finds a vulnerability
prepares a report that allows developers to correct the
bug. A clear description of the impact and prevalence of

4



the vulnerability allows software maintainers to prioritize
their efforts. The report can take on different forms, but as
The CERT Guide to Coordinated Vulnerability Disclosure
states, the technical and practical details of the vulnerabil-
ity and attack scenario should be well-documented [16].
To aid in the growth of other hackers, reports should be
readily available and searchable.

Scenario B (cont.) Meghan documents her findings,
along with the findings of James. Meghan and James
work together to package the exploit as a usable proof
of concept. Later, the team discusses their results.

3.1 Depth-first strategy (SD)
The most obvious targeting strategy resembles a depth-
first search. First, hackers select a small set of targets based
on some metric of operational impact. For each selected
target, the team spends time auditing the software for
bugs. This work flow is very natural: it focuses the team’s
effort on one software artifact at a time. Researchers
select the target at the very beginning of their work and
persistently look at that target for a notable period of time.

The depth-first work flow has found bugs in large
software that requires a familiarization period [11]. For
example, Google Project Zero researchers applied this
strategy to find bugs in Apple’s Safari browser. The re-
searchers harnessed the underlying libraries used in Safari,
and this required significant program understanding along
with modifications to the build chain. They found 26 bugs
over the course of one year using custom-built tools [13].

This strategy is straightforward from a management
perspective. A team leader collects information from
each hacker and distributes it to the teammates inspecting
the same target. The leader divides work based on the
approach of each team member. For example, one hacker
might examine the unit tests distributed with the target
software, modifying them to suit the team’s aims; another
could analyze the software with a popular static-analysis
tool; and yet another could attempt to harness different
parts of the target program to work with a fuzzer. The
responsibility for scheduling the fuzzing jobs and
subsequent review often falls on the author of a harness.

Hackers employing SD record information collectively
because it is immediately relevant to the other team
members. To promote coaching, the team pairs novice
hackers with experts hoping the novice will assimilate
concepts and techniques from the expert.

The primary pitfall of SD appears to be its inefficiency
relative to the broad skill levels found on practical teams.
With few software artifacts under scrutiny, the team will
exhaust the easier tasks related to finding bugs. This

leaves apprentices and possibly even journeymen less
able to contribute. Simultaneously, masters might find
themselves idle or performing tasks better suited for the
other skill levels at the beginning of a project.

Another pitfall is the inefficient use of automation. After
starting a fuzzing run, the team is left to continue working
on the same target. They might build additional fuzzing
harnesses or carry out in-depth manual analysis. Yet the
automation might later uncover information that would
have aided those processes, or it might even find the bugs
they seek. Ploughing forward might waste human effort.

3.2 Breadth-first strategy (SB)

We devised a new strategy that aims to address the pitfalls
of SD. Our goals were to scale the vulnerability-discovery
process to support a growing team of hackers, reduce
hacker fatigue, and increase the production of fuzz
harnesses. To do this, our strategy relies on the idea of
drastically increasing the pool of software targets. We
encouraged hackers to produce the greatest number of
fuzzing harnesses possible in each workday. We call this
the breadth-first strategy (SB).

SB encourages apprentice-level hackers to give up
when it becomes clear that harnessing a particular target
would require a significant time investment. Rather than
continue down a “rabbit hole,” apprentices document any
pertinent information about the target before moving it
to a separate “journeyman” queue. This provides more
experienced hackers material to review before applying
their more experienced abilities.

We posit that the key to this strategy is to collect a large
queue of targets and, for each target, have apprentices do
the simplest possible thing and nothing more. Keeping
apprentices out of rabbit holes allows more skilled hackers
to more deeply investigate a target once it is accompanied
by a report. In some cases, apprentices produce a working
build or even a corpus of fuzzing outputs, but not if produc-
ing these artifacts exceeds their abilities. Ways to generate
large pools of interesting targets include (1) dividing
a device into its software components, (2) following
a thorough analysis of the system-level attack surface,
(3) enumerating library dependencies, and (4) investigat-
ing multiple bug-bounties. Having a large pool of targets
allows apprentices to reject targets whose obstacles
exceed their ability. Examples might include software
with challenging run-time requirements, such as real-time
operating systems running on niche hardware; programs
that require dynamic network streams like FTP; programs
requiring extensive system configurations; or programs
that make use of a custom build process. With such a large

5



queue, prioritizing the targets so hackers spend more time
on higher-value items becomes critical. For example,
hackers on a penetration-testing team should prioritize
a target that allows external network connections.

An important consideration in our study was figuring
out how to train new members quickly, while at the same
time allowing them to provide operational value to the
team. A large queue of targets allows apprentices to select
those compatible with the tools that they already know
how to use. When they find that a target does not work
with a tool they know, they can record what they learned
and move it into a journeyman queue. Journeymen pick
up targets that an apprentice had begun and push them
into the exploration stage. The apprentice can, in turn,
learn from that work. Each team member’s work is thus
frequently reviewed by more experienced people, and
there is a clear path for someone to learn based on the
experience of others. Similarly, master hackers record
the problems that they overcome along with the types
of solutions that they apply. These notes frequently help
journeymen grow in knowledge too.

To make efficient use of automation, all work should
stop on a particular target whenever a new automated
job begins. Only once that job has completed (based
on some predetermined measure of completeness) are
the results reviewed, incorporated into the findings, and
used to determine next steps. In this way, unnecessary
human effort is minimized by relying on automation to
the greatest extent possible.

4 Experiment

We designed a human study to investigate our two
strategies: depth-first (SD) and breadth-first (SB). Our
experiment took place over the course of ten days, as sum-
marized in Figure 3. This counterbalanced design follows
The SAGE Encyclopedia of Communication Research
Methods [8] and includes between-subjects tests at the end
of the first week and within-subjects tests at the end of the
second week [6,9,27]. We ran our experiment on the busi-
ness days from November 7 through November 22, 2019,
taking the 8th and 11th off for Veteran’s day. The detailed
schedule of our experiment appears in Appendix B.

4.1 Subject selection

Our subjects drew from a pool of US Cyber Command
personnel, each of whom had at least a basic understand-
ing of the principles of system and software security.
Our primary means of recruiting was a pamphlet posted
throughout US Cyber Command work spaces, but we also

invited promising candidates by email. We advertised our
goal as identifying the best target-selection strategy for
bug finding, and we indicated that selected subjects would
spend two weeks working with expert hackers to analyze
a range of real software. Finally, we noted that we would
provide an AFL fuzzing tutorial for all participants. Our
pamphlet asked for applicants who (1) had experience with
Linux, (2) could work with open-source projects, (3) could
conduct Internet-based target research, and (4) could read
and modify C programs. 15 people indicated interest. Can-
didates signed a participation agreement and completed
a self-assessment (Appendix A) used to assign teams.

4.2 Orientation
Twelve subjects were present on the first day of our
experiment. We used the subjects’ self-reported years of
hacking experience to create groups. Then, we performed
a representative random sample to assign the present
subjects to two balanced teams of six. The distribution
of the original fifteen applicants contained: eight subjects
under one year of experience, two subjects between one
and two years, two with four years, two with five years,
and one subject who reported eight years experience.
All applicants with over one year of experience claimed
hacking was—at some point in time—part of their
full-time job. The buckets are not uniform, but rather
partition the reported skills in a way divisible into two
teams. We assigned each team an investigator to serve as
the leader, each with experience leading hacking teams.

We spent the first day providing introductions,
presenting a class on the popular open-source fuzzing
tool AFL [42], assessing the skills of our subjects, and
describing our work flow and submission standards.

Period of instruction The class combined a lecture
with exercises ranging from how to compile using
afl-gcc to fuzzing bzip2 using afl-qemu. We also
provided a 30 minute lecture-only class on Docker [3].

Skill assessment Our self assessment was subjective,
so we devised a more objective measurement of subject
skill in the form of a series of technical skill assessment
tests. We administered these tests three times: once
immediately after the initial training course, once at the
half-way mark (before the teams exchanged strategies),
and once at the end of the experiment. One aim was
to measure the amount of skill our subjects developed
during the course of executing each strategy.

All three skill assessments followed the same form,
consisting each time of a new set of five binaries taken

6



Orientation Day Week One Week Two

Tr
ai

ni
ng

Sk
ill

A
ss

es
sm

en
t

Te
am

A
ss

ig
nm

en
t

Depth

Breadth

Sk
ill

A
ss

es
sm

en
t

Breadth

Depth

Sk
ill

A
ss

es
sm

en
t

Team A

Team B

Applicants

Selection Orientation Execution

Individual skill differential

W
ith

in
-s

ub
je

ct
st

es
ts

Between-subjects tests

Se
lf

A
ss

es
sm

en
t

Figure 3: An overview of our experiment, divided into the phases of selection, orientation, and execution; we provide
a detailed schedule in Appendix B

from a pool of fifteen. We took these binaries from three
popular public corpora of fuzzing targets: the Trail of Bits
adaptations of the Cyber Grand Challenge binaries [38],
the MIT Lincoln Laboratory Rode0day bug-injection chal-
lenges [12], and Google’s OSS-Fuzz project [32]. In some
cases, we provided source code. By the end, each subject
had investigated all fifteen binaries over the course of three
skill assessments. We list the binaries in Appendix F. The
binaries we selected represent a variety of practical chal-
lenges varying across a number of dimensions, including
small versus large programs, pre-built versus complicated
build systems, and artificial versus natural bugs.

Each of the targets employed in our skill assessments
is freely available on the Internet. Also available on the
Internet is an “answer key” for each target including,
in some cases, a list of bugs and, in other cases, a
pre-built fuzzing harness. Our intention was to emphasize
that open source research is a key component of the
vulnerability-discovery process and to acknowledge that
known n-day vulnerabilities matter.

Subjects were given exactly one hour to make progress
on these targets; clearly not enough time for a deep-dive
into any of them. Their instructions emphasized two
goals: (1) find bugs and (2) create fuzzing harnesses.

The motivation for finding bugs is self-evident, as it
aligns with the goal of vulnerability research in general.
The reason for the goal of creating fuzzing harnesses is
to put subjects in the mindset of using automation as a
primary strategy for achieving the first goal.

Target selection Selecting targets for this experiment
was no easy task. Klees, et al. describe how selecting
targets to evaluate a fuzzing tool is difficult [20, §8]. We
encountered many of the same challenges when evaluat-
ing our hackers. After considering using the benchmarks
in earlier work [12, 15, 20, 38], we decided on something

else altogether. We chose to evaluate OpenWrt [10]. The
packages available to OpenWrt are open source and serve
diverse purposes. Each of our targets was real and thus rep-
resentative of modern, complex, and deployed software.

Before the subjects began the vulnerability-discovery
process, we ran a simple static analysis script that
extracted some important information from every
OpenWrt package. We collected each package’s version,
a listing of the files exported by the package, the results of
running file [19, p. 46] on each item in the package, and
the intersection of each ELF file’s exported symbols with
a set of frequently misused standard library functions
such as strcpy and gets.

For SD, we selected two targets: dropbear and uhttpd.
Because these services are installed and listening on a
network socket by default, they represent the most likely
choices for a hacker performing SD. For SB targets, we
allowed subjects to select any software the OpenWrt pack-
age manager provides, except for dropbear and uhttpd.
We excluded those two during SB so that both teams would
start fresh on those targets during SD. Two targets for SD
and a thousand for SB does present an asymmetry; upon
first inspection, this might appear unfair, as (1) the true
number bugs in the underlying targets is biased and (2) the
two SD targets require more skill to analyze than the av-
erage of the SB targets. Thus the reader might claim, “of
course SB can find more bugs, there are more bugs to find!”
We agree. We argue this perceived unfairness is really
intuition that SB is more effective than SD, because our
selections represent real systems. Bugs exist, but over com-
mitting to a single target is not the easiest way to find them.

In order to aid the post-study analysis, we selected a
four-year-old version of OpenWrt: 15.05.1. As others
mention [20], there is no good substitute for real bugs
found. Unique crashes as defined by program path or
stack hash do not correlate to unique bugs. By choosing

7



an older version of OpenWrt, we hoped that subjects
would find bugs that were patched by version 18.06.5, the
modern release as of our experiment. This way, we could
take crashes and categorize them more precisely. Because
all targets are open source, we will use their issue trackers
to report crashes still present in the modern version.

Work flow and tools Both strategies, SD and SB,
require tools to manage the execution of the vulnerability-
discovery process. We spent time during the orientation
describing these tools and the manner of their use.

We relied on GitLab to manage our teams due its
feature set and open-source availability. For each
vulnerability-discovery campaign, we created a GitLab
project, and for each proposed target we created a GitLab
issue. We added the package information derived from
our scripts to each issue’s text.

We directed our subject teams to track their progress us-
ing a GitLab issue board, divided into lists related to each
step in the vulnerability-discovery process. Each team’s
board contained one list (as defined in [14]) for each of
open, information gathering, program understanding,
exploration, and journeyman. We depict a snapshot of
one such board in Figure 4. Many authors, including
Newport [25], note the need for experts to be minimally
interrupted, and this is why we did not include every step
of our vulnerability-discovery process in our issue boards.
Instead, we attempted to balance our subjects’ need for
concentration, our own need to track progress, and the
teams’ need to record important information. We felt a
reasonable compromise would ask subjects to:

• drag a ticket from open to information gathering
upon initiating work on a target;

• append to an issue relevant articles, blogs, source
repositories, corpora, and other information uncov-
ered during their search;

• move an issue from information gathering to pro-
gram understanding once they create products wor-
thy of committing to the target’s GitLab repository;

• move an issue to the exploration list upon creating
working fuzzing harness; and

• move an issue to the journeymen list if progress be-
comes too difficult. In this case, comments will ex-
plain the obstacles encountered.

We gave each subject an Internet-connected work-
station co-located with their team members. The
workstations contained tools for our subjects, including:

Ghidra [18], AFL [42], Honggfuzz [37], Docker [3],
and Mayhem [5]. Each workstation also contained
monitoring software and was thus tied to our data
collection. We further allowed the subjects to use any
bug-finding tool they desired, but we encouraged them
to use dynamic-analysis tools. We also provided subjects
a Docker container that emulates the OpenWrt 15.05.1
filesystem and services (adapted from other work [35]).

4.3 Execution

Our experiment involved two iterations of our
vulnerability-discovery process. During the first it-
eration, Team A applied SD, and Team B applied SB.
Roughly each hour, we stopped work and asked the sub-
jects to complete a survey (Appendix C). The teams traded
their strategies for the second iteration, and we repeated
the skill assessment after each iteration. Each day ended
with an end-of-day survey (Appendix D), and the final
day included an end-of-experiment survey (Appendix E).

For the next four business days, subjects on each
team—lead by an investigator—worked in their assigned
strategy. We enforced that each group use their assigned
strategy by selecting only two targets for SD and approx-
imately 1,000 targets for SB. The team lead encouraged
SB subjects to give up quickly and select targets that they
could reasonably accomplish in two hours of work. We
gave subjects the intermediate skill assessment before
they traded strategies for the final four business days. On
the final day, subjects took the final skill assessment.

Limitations Our sampled population consisted solely
of US Cyber Command personnel, but we posit our
results are applicable to other organizations. Both teams
knew on day one the software they would target for both
weeks using our two strategies; this could have resulted in
looking ahead at a future target, but team leads mitigated
this by focusing work. Our two team leaders did double as
investigators, but they tried to mitigate any bias towards
SB as they guided their teams.

Other aspects of our study were difficult if not
impossible to control. Some subjects missed work due
to unforeseen emergencies, although the collective time
for both teams appeared to be about equal. At times,
our Internet connection became prohibitively slow. This
affected both teams and seemed to persist during both
weeks of the study. Sometimes subjects would restart
their workstation or it would crash from an unwieldy fuzz
job. This affected our ability to collect and log data about
the participant’s actions. We also discovered during the
experiment that our X11 monitoring tool did not capture

8



Target
Information gathering

Program understanding
Attack surface Automated exploration Promote to journeyman

Figure 4: The use of Gitlab to track the progress of a vulnerability-discovery campaign; we used a variant of Kanban
with bins that corresponded to groups of steps in our vulnerability-discovery process; each issue corresponds to a target

time spent in the X11 lock screen.

Human research standards and data collection
We obtained a DoD Human Research Protection Pro-
gram (HRPP) determination before executing the research
described by this paper. This included an examination by
our Institutional Review Board (IRB). All recruitment
was voluntary and minimized undue influence. We as-
signed each subject a two-word pseudonym that was also
their machine’s host name, their Rocket.Chat user name,
their survey response name, and their GitLab user name.
Recorded data bore this pseudonym, and it was in no way
linked to the subject’s real name. We collected skill assess-
ments, surveys, GitLab commits, comments, and work
products. We also collected data using execsnoop, which
logged programs started by the subjects, and x11monitor,
which monitored the subjects’ X11 cursor focus.

5 Results

Our analysis of the experiment’s results involves four
categories: survey questions, determining the number
of bugs found, measuring the subjects’ hacking skill,
and ancillary data. We present this analysis here before
commenting on our two strategies.

5.1 Surveys
We use Mann-Whitney u-test p-value (MW). That is, the
probability that the statement listed is not true given our
observation. We use this test to compare the means of
survey responses and conform to the necessary assump-
tions [24, §1.2] except that each entry is an independent
trial. This is violated because we sample each subject mul-
tiple times over the course of each method. We expect there
is variation within a single subject’s responses and thus
we conducted multiple samplings. Potentially, some other
tests such as repeated measures ANOVA [17] or Wilcoxon

signed-rank test [41] are more fitting, but not quite right
and not the focus of this paper. We choose Mann-Whitney
mainly because it is a non-parametric test with minimal
assumptions about the data’s distribution and allows us to
test the signed difference of means between two groups:
SD and SB. B is the Bernoulli Trial as described by Pa-
poulis et al. [30]. We must assume our sample of 12 is
“large enough”. To balance the number of tests with our
small sample, we use an acceptance criteria of 0.020.

Hourly survey outcomes When comparing between
subjects from both teams during the first week, subjects
performing SB felt less surprised (MW=0.003), less frus-
trated (MW=3×10−4), and less doubtful (MW=0.004)
than those performing SD. They also spent more time
interacting with tools (MW=5×10−7) and more time
harnessing (MW=0.002).

After the second week, we compared within-subjects
on the team that transitioned from SD to SB. These
subjects reported that SB left them spending less time
on research (MW=1×10−4) and feeling less frustrated
(MW=0.007), doubtful (MW=0.001), and confused
(MW=0.009). SB found them interacting with tools
(MW=0.008) and harnessing (MW=0.009) more.

End-of-experiment outcomes Subjects felt SD was
less effective than SB overall (B=0.019) and was a less
effective use of their team’s skills (B=0.003). When asked
which method they would prefer to lead, subjects were less
likely to choose SD (B=0.003). Subjects felt breadth-first
work was more independent but left them feeling less a
part of a team (B=0.003). The subjects claimed SB was
less frustrating (B=0.003), and they unanimously said it
was easier to get started with (B=2.400×10−4) and easier
for a novice to contribute to (B=2.400×10−4). Subjects
also unanimously claimed they learned something during
the experiment (B=2.400×10−4). Subjects felt more
prepared (MW=0.010) and more interested (MW=0.015)

9



in hacking after the experiment than before. Every partic-
ipant reported finding at least one bug (B=2.400×10−4).

5.2 Determining number of bugs
As Klees et al. discuss in depth, many papers fail to
provide control for randomness in fuzzing results [20].
Our approach was to collect subject harnesses and run
each in three independent trials for 24 hours using the
corpora and fuzzer selected by the harness creator. While
Klees et al. also discuss finding “real bugs,” the process
of iteratively patching is extensive and time consuming.
As a compromise, we settled on an approximation. In lieu
of “real bugs,” we decided to use the bug de-duplication
mechanism in Mayhem [1, 5].

Statistical tests We use MW to test the significance of
mean difference in coverage and bug metrics and conform
to all required assumptions [24, §1.2]. We chose this test
to measure the difference in bugs found by SD and SB
primarily for the reasons suggested by Klees [20, §4].

Bug outcomes After using a total 18,432 compute-
hours to test each harness three independent times for 24
hours and two cores each, we collected the results. The
following table shows the cumulative number of unique
bugs found in each independent fuzzing trial Tx.

Team Method Harnesses T0 T1 T2

A SD 8 3 2 3
A SB 42 31 23 40
B SB 61 42 49 40
B SD 12 4 4 4

Testing f (SD) < f (SB) reveals some potentially
coincidental results. Team A within-subjects, found a
p-value of (0.038>0.020); Within-subjects for team B,
(0.032 > 0.020). For the between-subject test of week
one, (0.032> 0.020). However, combining both team’s
findings, we find significant evidence to claim f (SD) <
f (SB) with a p-value of (0.002<0.020).

In addition to finding more bugs, the categories of
bugs found by SB are significantly more diverse and
security-related than the bugs found in SD. Both SB
sessions found multiple out-of-bounds write primitives as
described in the Common Weakness Enumeration (CWE)
database [23], while none were found by SD. Both
strategies found out-of-bounds reads [22], but SB found
significantly more and some that could lead to information
disclosure. For bug-bounty hunters, this is important
because bug criticality determines compensation [28].

5.3 Skill assessment
After each assessment, we collected the subjects’ work
products and notes and graded them with the goal of
determining three objective measures: (1) number of
working harnesses, (2) number of bugs found, and
(3) number of bugs reproduced. We defined a fuzzing
harness as working if, after a short while, it discovers new
paths through the target program. We defined a bug as any
program terminated by a signal that might result in a core
dump. Some commonly-encountered examples include:
SIGABRT, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP.
Finally, it is possible for a subject to find a bug—either
through static analysis or information gathering—but not
reproduce it. Reproducing a bug requires the subject to
successfully run the program with the crashing input.

After collecting each objective measure, we combined
them into a single score for each participant for the
purpose of analysis. While one could imagine assigning
differing weights to each category, those weights would
likely be chosen based on model fitting from training data.
Perhaps a future researcher might use data from sources
like HackerRank [39]. Given the large scope of this study,
we chose to weight each category equally. A participant’s
score, then, is the sum of all measures: h+b+r.

Statistical tests and outcomes Our assessment of
subjects before the study and after each strategy makes for
a good candidate for the Friedman signed-rank test [33].
We chose this test over others such as repeated-measures
ANOVA [17] because this test does not require an
assumption about the underlying distribution of our data.
In our case, this is important because we neither know
the distribution of test scores nor think it reasonable
to assume the distribution is normal. We again use an
acceptance criteria of 0.020.

The Friedman test unfortunately revealed no statis-
tically significant mean difference between the three
assessments. When testing all twelve participants, we
receive a p-value of 0.02024; for group one, 0.10782;
and for group two, 0.12802. A larger sample of subjects
might reveal more significant results.

5.4 Ancillary data
Browsing the web vs. strategy Dividing the work
time into hour-long windows to bin time spent with the
X11 focus on Firefox (the pre-installed web browser)
and grouping the values by strategy SD or SB was not
significant according to Wilcoxon signed-rank test [41].
The number of entries in Firefox’s history and the team’s
strategy were also not significantly related.

10



Materials produced Figure 5 describes the number of
materials produced by both teams under both strategies.
Both teams produced more materials under SB than SD:
Team A produced 151 and 588 products under SD and SB,
respectively; and Team B produced 177 and 387 products
under SD and SB, respectively.

5.5 Depth-first strategy discussion
This section, along with §5.6, records observations made
during the daily team discussions with subjects. A number
of factors challenge SD in a semi-autonomous, team-based
analysis environment. The process of investing significant
resources into a single target can reveal novel flaws or no
flaws at all; a hacker will not know which without first
consuming considerable time and effort.

Minimum skill threshold Apprentice hackers are
prone to falling in rabbit holes. Votipka described this
thusly: “Without prior experience guiding triage, our
practitioners relied on stumbling across vulnerabilities
incidentally; or on their curiosity, personal creativity,
and persistence with ample time to dig through the
complexity of a program. Such incidental discovery is
time consuming and haphazard, with little consistency
in results [40, §VI.A.1].”

SD made recruiting more difficult because of the
extensive list of prerequisite knowledge required to get
started with some of our targets. Considering the two
depth-first projects mentioned in this paper, we sought
experience in: (1) software reverse engineering and
assembly architectures (2) C software development
(3) understanding and modifying software build tool
chains (4) binary patching (5) source auditing (6) bug
finding (7) the use of static analysis tools (8) fuzzing We
also aimed to find self-motivated problem solvers.

Unsurprisingly, SD overwhelmed the less-skilled sub-
jects. Subjects performing SD felt more surprised, more
frustrated, and more doubtful than during SB. Subjects
also claimed SD was a less effective use of their team’s
skills than SB. We posit that these sentiments resulted from
the quick exhaustion of novice work at the beginning of a
bug-finding session, leaving tasks requiring a more skilled
practitioner. Very early on, when looking at uhttpd and
dropbear, novice subjects found valuable information
from Internet research, but for the remainder of the week,
they contributed significantly less to team progress.

Feedback Loop When our teams were assigned a
single target, they continued working on that problem
even when automation might be on the path to a solution.

At some point, the human will be doing work eventually
rendered unnecessary due to that automation. This is
inefficient because, in general, human time is expensive
while computer time is inexpensive.

SD left subjects less time to interact with tools and less
time harnessing than SB. This means hackers are not able
to maximize the time spent producing new harnesses to
test new code. There is a natural break where—once a
harness is complete—it is inefficient for the hacker to con-
tinue work until they know what automation will discover.

Knowledge sharing and tasking A team of humans
simultaneously investigating the same target incurs a high
synchronization overhead. Some findings are of general
interest and should be shared as soon as possible, but
other information might not be of broad interest. Com-
municating incurs overhead, but under-communicating
leads to duplicate work. How to balance this is not always
immediately clear. Feedback from subjects indicated
that SB left them feeling less a part of a team than SD. We
believe this stems from the fact that SB naturally leads
to more independent work and a reduction in real-time
communications in favor of asynchronous communica-
tion, such as notes and code submissions. This position
is bolstered by teaming research in a related discipline
that found the most productive teams in cyber defense
exercises have the fewest direct human interactions [4].

The discrete tasks in the fuzzing process seem con-
ducive to parallelization. In practice, these tasks turn out
to be a pipeline, with progress on one task being necessary
in order to advance to the next. With some targets, such as
ubus [29], emulating the target is a nontrivial prerequisite
to fuzzing. The narrow target selection of SD does little
to help with parallelizing the fuzzing pipeline.

Output Ultimately, Team A found zero bugs in uhttpd
and three bugs in dropbear; Team B, zero and four. With
SD, hackers tended to go down “rabbit holes,” investing
significant time and effort into analyzing complex
components of a target. The more time spent delving into
a particular component, the more a sort of tunnel vision
would develop. This left other components of the target
ignored. Ultimately, deadlines led to overlooked bugs that
might have been easy to find using automation techniques
and minimal human effort.

5.6 Breadth-first strategy discussion
Minimum skill threshold and feedback Our appren-
tice hackers were both more prolific and more effective
while employing SB. SB allows the human to completely

11



Tue, 11/12 Wed, 11/13 Thu, 11/14 Fri, 11/15 Mon, 11/18 Tue, 11/19 Wed, 11/20 Thu, 11/21 Fri, 11/22

Date

0

200

400

C
u
m
u
la
ti
v
e
m
a
te
ri
a
l
co
u
n
t

Breadth-First

Depth-First

Figure 5: Total number of materials (Git commits, GitLab comments, GitLab projects, issues, issue tags, and Rocket.Chat
messages) produced per team over time; the vertical dotted line represents the transition between strategies

hand off work to the machine and only continue work on
that target once the machine had a chance to discover a
solution. Such a model allows for a feedback loop from
the human to the machine and back, minimizing human
time spent, and iterating until reaching a desired outcome.

Knowledge sharing and tasking SB allows team
members to work with confidence on independent tasks,
make progress until they understand the key pieces
of information, and then communicate those pieces
of information in an asynchronous way. This reduces
overhead and redundancy while resulting in a continually
growing record of findings, each feeding into the next.
With respect to coaching, pairing a novice with an expert
frequently resulted in the expert spending more time
teaching then hacking. In a model where team members
can record and convey their problem solving, more expert
people can review those problems and suggest paths
forward based on their experience. SB’s large set of targets
means that hackers can create a collection of fuzzing
pipelines as part of a parallel strategy.

5.7 Subsequent and future work
We applied our breadth-first strategy to other large-scale
projects after our experiment, and we record here some
additional lessons. We also suggest areas of future work.

Targeting We have further automated our targeting
stage to make leaders more efficient. In one project, a
team was asked to analyze four interesting devices. We
wanted to apply SB, so we wrote a script to enumerate the
binaries on each device and establish issues on GitLab
for each. This eased deciding what to work on, and it
simplified the tracking of progress.

Future experiments might benefit from prioritizing
targets. The targets in our experiment’s queue were
unsorted. Thus analysts tended to work through the
Open column in GitLab from top to bottom, suggesting
that sorting the queue would result in more time spent
analyzing the highest-priority software.

Information gathering Future work could investigate
using web scrapers to perform common research tasks.
For example, if the target was objdump, a script could
collect the results of searching for “objdump CVE”, or
“fuzzing objdump.” These tools could easily append this
information to each target’s GitLab issue.

Program understanding There is a great deal of
further research to be done in the area of program under-
standing and its impact on decision making. Automated
tools should identify indicators of potential bugs. These
indicators would justify additional time spent improving
harnesses and diving deeper into understanding a target
program. Without them, scaling becomes difficult if
not impossible, as analysts tend to spend too much time
focusing on challenging targets, possibly overlooking
easier-to-find bugs in other targets. This is not to say
that challenging targets should be ignored, but that team
leaders should make an evidence-based determination of
how much time to dedicate to a challenging target before
the manpower cost outweighs the benefit of finding a bug.

Obvious examples of other information that tools could
add to targets’ GitLab issues include: the lack of basic
run-time protection mechanisms like stack canaries, PIE,
RELRO, and non-executable stacks; the presence of the
SUID bit; --help and --version outputs; and whether
the program listens on a port (i.e., netstat output) or
runs automatically (i.e., ps output). This information

12



would help leaders prioritize targets or hackers select
them, and there is clearly room for more ideas.

Attack surface analysis During a pilot study that
preceded our experiment, running fuzz harnesses on our
dedicated cluster required transferring the harnesses to a
separate network where a team member managed fuzzing
jobs. This proved to be a significant undertaking. The
quality of the documentation provided by our hackers var-
ied, and thus reproducing the harness occasionally failed.
Failures led to several hours of rework. As a remedy, we
adopted the use of Docker [3]. A Dockerfile able to build
the targeted program on a base Ubuntu image with AFL in-
stalled has since then accompanied each new harness. We
made the hackers responsible for performing test builds of
their Dockerfile. The switch to Dockerfiles as a deliverable
drastically reduced the overhead incurred when trans-
ferring the harnesses to a different network for fuzzing.
We later expanded this architecture so that hackers could
produce docker images that used any arbitrary fuzzer.

Automated exploration Automation in this stage
consists of taking the completed harnesses and running
them on computing resources. An architecture such as
Clusterfuzz [32] matches our intent. During the depth-first
strategy, we attempted to use our computing resources by
having a single fuzz job run on many nodes of our cluster.
When we transitioned into having many targets, we
needed a simpler structure that would allow us to quickly
run many jobs. We decided after our pilot study that a job
running on a single node and employing all cores on the
node would fit our needs. Not only is this an easier archi-
tecture to implement and maintain, but Cioce et al. show
the diminishing returns of additional fuzz-cores make this
a more efficient use of our computing resources [7].

Vulnerability recognition While our experiment was
focused on building teams around the process of harness-
ing target applications, we realize that more work needs to
be done to establish processes for managing the results of
the fuzzing campaign—vulnerability recognition at scale.
Some applications produced numerous crashes, with one
application producing thousands of crashes. Techniques
for dedicating sufficient time to crash triage while also
continuing to harness new targets must be developed.
With limited manpower, this is a challenging problem for
which we are still working on a solution.

Other researchers who choose to extend our work
should attempt to assign criticality scores to the bugs
found. They might also wish to determine—before their

experiment—the number of known bugs in the targets
used.

Other We found overheads in SB that were much
less impactful to SD. Small things such as enforcing
GitLab policies or shepherding targets on and off of our
computing resources became time-consuming with many
projects happening simultaneously. Fuzzing, archiving
and reviewing results was difficult to balance with other
targets in the queue. Also, in our actual operational
environment, higher leadership would add to our target
queue, leaving us to figure out how assign priorities while
balancing ongoing work. As with many endeavors, these
practical matters are a ripe area for future work.

6 Conclusion

Frustrated with the pitfalls of SD, we sought a better ap-
proach, and we found one. Evidence indicates SB is more
effective at finding bugs, and we found some positive side
effects as well. SB more efficiently employs hackers of
varying skill levels. It also boosts the amount of documen-
tation and learning resources available to hackers and lead-
ers, cultivating technical growth. SB better applies auto-
mated bug-finding tools, and it more clearly defines work
roles and unit tasks. Our experiment to test SD and SB is re-
peatable and thus allows researchers to test other hypothe-
ses related to the hacking process in a similar environment.
Finally, we learned, coached, and hacked for fun and profit.

Acknowledgments

We are grateful for the aid Leslie Bell provided while
we sought approval of our experimental approach using
human subjects. Temmie Shade helped review our
survey questions, and James Tittle coached us on the
counter-balanced design of our experiment. Andrew Ruef
also gave his time to discuss many of our early ideas.
Richard Bae and ForAllSecure provided us with Mayhem
installation, support, and notable computing resources.
The staff at Dreamport (https://dreamport.tech)
hosted our pilot and experiment, providing space, com-
puting resources, and support. We thank our participants
in both the actual study and the pilot. This paper would
not have been possible without their help.

Our work was performed in part during a segment of
the NSA’s Computer Network Operator Development
Program, and both the investigators and many of our
subjects came from three military services: the Army,
Navy, and Air Force. We are grateful for our services’
support towards advancing vulnerability discovery.

13



A Self assessment

On a scale of 0–5, how comfortable do you feel . . .
• Programming?

– With the C programming language?

∗ Writing a program from start to finish?
∗ Reading and understanding a large program?
∗ Modifying a large program?

– With the Python programming language?

∗ Writing a program from start to finish?
∗ Automating data processing tasks?
∗ Implementing algorithms and data structures?

– Collaborating with a software development team?
• Using open-source software?

– Compiling large software packages written in C?
– Using make? cmake? GNU auto-tools? git?
– Making small modifications to software?
– Making large modifications to software?

• Using Linux?

– Using bash?
– Using Debian-based Linux?

∗ Configuring a Debian-based Linux system?
∗ Using APT?

– Understanding system calls?
– Understanding exit signals such as SIGSEGV?

• Using Docker?
• Using dynamic analysis tools such as fuzzers?

– Using QUEMU?
– Using a AFL?

∗ Modifying a binary-only target to work with AFL?
∗ Modifying an open-source target to work?

– Using Libfuzzer? Honggfuzz?
– Using CISCO-TALOS/Mutiny?
– Using an unlisted dynamic-analysis tool?
– Understanding run-time instrumentation?
– Understanding compile-time instrumentation?
– Writing your own custom purpose fuzzer?
– Understanding differed forking?
– Understanding persistent fuzzing?
– Enumerating all possible program input methods?

• Recognizing a software security flaw?

– Reading articles on new software vulnerabilities?
– Reproducing research on software vulnerabilities?
– Understanding DEP, ASLR, and stack canaries?
– Overcoming these protections?
– Exploiting control over the instruction pointer?
– Exploiting control over printf arguments?
– Exploiting a program that misuses strcpy, memcpy,

or sprintf with a stack destination?
– Attacking programs that misuse system?
– Understanding the implications of a SUID program?
– Exploiting with heap-metadata overwrites?
– Finding information on the Internet?

• Using the scientific method?
• With Assembly Languages?

– Reading Intel x86? Writing Intel x86?
– Using different calling convention such as stdcall,

fastcall, and cdecl?
• Reverse engineering?

– Using debuggers? Using disassemblers?
– Collaborating with a team, reversing a large target

binary?

B Schedule

Monday Tuesday Wednesday Thursday Friday

November 7, 2019

8:00 am
9:00 am

10:00 am
11:00 am

12:00 noon
1:00 pm
2:00 pm
3:00 pm
4:00 pm

Introductions

AFL class

Skill assessment

Docker and submission
standards

14



Monday Tuesday Wednesday Thursday Friday

November 12–15, 2019

8:00 am
8:30 am

9:00 am
9:30 am

10:00 am
10:30 am

11:00 am
11:30 am

12:00 noon
12:30 pm

1:00 pm

1:30 pm

2:00 pm

2:30 pm

3:00 pm

3:30 pm

4:00 pm

Introductions Introductions Introductions Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Team synchronization Team synchronization Team synchronization Team synchronization

Monday Tuesday Wednesday Thursday Friday

November 18–22, 2019

8:00 am
8:30 am

9:00 am
9:30 am

10:00 am
10:30 am

11:00 am
11:30 am

12:00 noon
12:30 pm

1:00 pm

1:30 pm

2:00 pm

2:30 pm

3:00 pm

3:30 pm

4:00 pm

Discussion

• Team interview

– Utility
– Interaction
– Success
– Failure

Skill Assessment

• Targets prepared
• Observers ready
• 15-minute overview
• 60-minute test

Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Introductions Introductions Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Team synchronization Team synchronization Team synchronization

Introductions

Sprint hours

• Apply targeting strategy
• Hourly survey
• Lunch

Discussion

• Team interview

– Utility
– Interaction
– Success
– Failure

Skill assessment

15



C Hourly questions

• What is your pseudonym?
• How many minutes were spent interacting with

tools?
• How many minutes were spent harnessing?
• How much time was spent on research?
• Are you feeling productive?
• Are you feeling surprised?
• Are you feeling frustrated?
• Are you feeling doubtful?
• Are you feeling confused?

D End-of-day questions

• What is your pseudonym?
• I learned something today.
• I felt frustrated today.
• I worked with another team member today (team

lead excluded).
• I accomplished something today.
• I feel exhausted today.
• I enjoyed my work today.
• I learned a new skill today.
• I was bored today.

E End-of-experiment questions

(1) Which vulnerability-discovery method do you feel
was more effective?

(2) Which vulnerability-discovery method made you
feel like you were part of a team?

(3) Which vulnerability-discovery method made the
best use of your personal skill?

(4) Which vulnerability-discovery method do you think
made the best use of your team’s skill?

(5) Which vulnerability-discovery method did you think
was easier to get started with?

(6) Which vulnerability-discovery method do you think
is easier for a novice to contribute to?

(7) Did you learn any valuable skills during the
experiment?

(8) Which vulnerability-discovery method did you learn
more during?

(9) Which vulnerability-discovery method did you
enjoy more?

(10) Which vulnerability-discovery method frustrated
you the most?

(11) If you were asked to lead a vulnerability-discovery
project, which method would you choose?

(12) How prepared do you think you were for the
vulnerability-discovery work you were asked to do
during the experiment, before initial training?

(13) How prepared do you think you were for the
vulnerability-discovery work you were asked to do
during the experiment, after initial training?

(14) How prepared do you think you were for the
vulnerability-discovery work you were asked to do
during the experiment, after the experiment?

(15) What was your interest in doing vulnerability-
discovery work, before the experiment?

(16) What was your interest in doing vulnerability-
discovery work, after the experiment?

(17) How many unique bugs did you find during the
experiment?

• 0
• 1–5
• 5–10
• 10–20
• 20+

(18) Which method of learning was best for you during
the experiment?

• Instructor-led training
• Hands-on experience
• Other

(19) Were there any external factors that affected your
or your team’s performance during the experiment?
(For example, network outages, room temperature,
experiment hours, and so on.)

(20) Do you have any thoughts or comments you would
like us to consider?

F Skill assessment binaries

Collection Binary

Cyber Grand Challenge Childs_Game
Game_Night
Casino_Games

Rode0day (binary only) tcpdumpB
fileB
audiofileB

Rode0day (with source) bzipS
jqS
jpegS

OSS-Fuzz (with source) vorbis
libarchive
libxml2
c-ares
freetype2
openssl

16



References

[1] Thanassis Avgerinos, Alexandre Rebert, Sang Kil
Cha, and David Brumley. Enhancing symbolic
execution with veritesting. Communications of the
ACM, 59(6):93–100, May 2016.

[2] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo
Ivancic, Tim King, Markus Kusano, Caroline
Lemieux, László Szekeres, and Wei Wang. FUDGE:
Fuzz driver generation at scale. In Proceedings of
the 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE
2019, page 975–985, New York, New York, USA,
2019. ACM.

[3] Carl Boettiger. An introduction to Docker for
reproducible research. Operating Systems Review,
49(1):71–79, January 2015.

[4] Norbou Buchler, Prashanth Rajivan, Laura R
Marusich, Lewis Lightner, and Cleotilde Gonzalez.
Sociometrics and observational assessment of team-
ing and leadership in a cyber security defense com-
petition. Computers & Security, 73:114–136, 2018.

[5] Sang Kil Cha, Thanassis Avgerinos, Alexandre
Rebert, and David Brumley. Unleashing Mayhem
on binary code. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages
380–394, Washington, DC, USA, 2012. IEEE
Computer Society.

[6] Gary Charness, Uri Gneezy, and Michael A Kuhn.
Experimental methods: Between-subject and
within-subject design. Journal of Economic
Behavior & Organization, 81(1):1–8, 2012.

[7] Christian Cioce, Daniel Loffredo, and Nasser Salim.
Program fuzzing on high performance computing
resources. Technical Report SAND2019-0674,
Sandia National Laboratories, Albuquerque,
New Mexico, USA, January 2019. https:
//www.osti.gov/servlets/purl/1492735
[Accessed January 23, 2020].

[8] Elena F. Corriero. Counterbalancing. In Mike Allen,
editor, The SAGE Encyclopedia of Communication
Research Methods, volume 1. SAGE Publications,
Thousand Oaks, California, USA, 2017.

[9] Richard Draeger. Within-subjects design. In Mike
Allen, editor, The SAGE Encyclopedia of Commu-
nication Research Methods, volume 4. SAGE Pub-
lications, Thousand Oaks, California, USA, 2017.

[10] Florian Fainelli. The OpenWrt embedded develop-
ment framework, February 2008. Invited talk at the
2008 Free and Open Source Software Developers
European Meeting.

[11] Ming Fang and Munawar Hafiz. Discovering buffer
overflow vulnerabilities in the wild: An empirical
study. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement, ESEM ’14, New
York, New York, USA, 2014. ACM.

[12] Andrew Fasano, Tim Leek, Brendan Dolan-Gavitt,
and Josh Bundt. The rode0day to less-buggy
programs. IEEE Security & Privacy, 17(6):84–88,
November 2019.

[13] Ivan Fratric. 365 days later: Finding and exploiting
Safari bugs using publicly available tools, October
2018. https://googleprojectzero.blogspot
.com/2018/10/365-days-later-finding-an
d-exploiting.html [Accessed March 30, 2019].

[14] GitLab. Issue boards. https://about.gitlab.c
om/product/issueboard/ [Accessed December
17, 2019].

[15] Google. Fuzzer test suite. h t t p s :
//github.com/google/fuzzer-test-suite
[Accessed December 18, 2019].

[16] Allen D. Householder, Garret Wassermann, Art
Manion, and Chris King. The CERT(C) guide
to coordinated vulnerability disclosure. https:
//resources.sei.cmu.edu/asset_files/S
pecialReport/2017_003_001_503340.pdf
[Accessed March 31, 2019].

[17] Schuyler W. Huck and Robert A. McLean. Using a
repeated measures ANOVA to analyze the data from
a pretest-posttest design: a potentially confusing
task. Psychological Bulletin, 82(4):511–518, 1975.

[18] Robert Joyce. Come get your free NSA reverse
engineering tool!, March 2019. Presentation at the
2019 RSA Conference.

[19] Brian Kernighan and Rob Pike. The UNIX Program-
ming Environment. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, USA, 1984.

[20] George Klees, Andrew Ruef, Benji Cooper, Shiyi
Wei, and Michael Hicks. Evaluating fuzz testing.
CoRR, abs/1808.09700, 2018.

17



[21] Valentin J. M. Manès, HyungSeok Han, Choong-
woo Han, Sang Kil Cha, Manuel Egele, Edward J.
Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, October
2019. Early Access.

[22] MITRE. Cwe-125: Out-of-bounds read. https://
cwe.mitre.org/data/definitions/125.html
[Accessed February 3, 2020].

[23] MITRE. Cwe-787: Out-of-bounds write. https://
cwe.mitre.org/data/definitions/787.html
[Accessed February 3, 2020].

[24] Nadim Nachar. The mann-whitney u: A test for
assessing whether two independent samples come
from the same distribution. Tutorials in quantitative
Methods for Psychology, 4(1):13–20, 2008.

[25] Cal Newport. Deep work : rules for focused success
in a distracted world. Grand Central Publishing,
New York ; Boston, 1st ed. edition, January 2016.

[26] Vegard Nossum. Fuzzing the OpenSSH dæmon us-
ing AFL. http://www.vegardno.net/2017/03
/fuzzing-openssh-daemon-using-afl.html
[Accessed March 30, 2019].

[27] Anne Oeldorf-Hirsch. Between-subjects design.
In Mike Allen, editor, The SAGE Encyclopedia
of Communication Research Methods, volume 4.
SAGE Publications, Thousand Oaks, California,
USA, 2017.

[28] Hacker One. The 2019 hacker report.
https://www.hackerone.com/resource
s/reporting/the-2019-hacker-report
[Accessed December 4, 2019].

[29] OpenWrt. ubus (OpenWrt micro bus architecture).
https://openwrt.org/docs/techref/ubus
[Accessed Januarary 22, 2020].

[30] Athanasios Papoulis and S Unnikrishna Pillai.
Probability, random variables, and stochastic
processes. Tata McGraw-Hill Education, New York,
New York, 2 edition, 2002.

[31] Reginald E. Sawilla and Xinming Ou. Identifying
critical attack assets in dependency attack graphs.
In Sushil Jajodia and Javier López, editors, 13th
European Symposium on Research in Computer
Security, volume 5283 of Lecture Notes in Computer
Science, pages 18–34. Springer, 2008.

[32] Kostya Serebryany. OSS-Fuzz - Google’s con-
tinuous fuzzing service for open source software,
August 2017. Invited talk at the 26th USENIX
Security Symposium.

[33] Michael R Sheldon, Michael J Fillyaw, and
W Douglas Thompson. The use and interpretation
of the friedman test in the analysis of ordinal-scale
data in repeated measures designs. Physiotherapy
Research International, 1(4):221–228, 1996.

[34] R. Shirrey. RFC 4949: Internet security glossary, ver-
sion 2. https://tools.ietf.org/rfc/rfc49
49.txt [Accessed March 31, 2019], August 2007.

[35] Paul Spooren. Running OpenWrt inside Docker.
https://forum.openwrt.org/t/running-op
enwrt-inside-docker-sbin-init-stuck/13
774/8 [Accessed December 17, 2019].

[36] Nick Stephens, John Grosen, Christopher Salls,
Audrey Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In Proceedings of
the 23rd Annual Network and Distributed System
Security Symposium, volume 16, pages 1–16, 2016.

[37] Robert Swiecki. Honggfuzz. h t tp :
//honggfuzz.com [Accessed December 18, 2019].

[38] trailofbits. Challenge sets. https://www.trailo
fbits.com/research-and-development/cha
llenge-sets/ [Accessed December 17, 2019].

[39] Sai Vamsi, Venkata Balamurali, K Surya Teja, and
Praveen Mallela. Classifying difficulty levels of
programming questions on HackerRank. In Interna-
tional Conference on E-Business and Telecommuni-
cations, volume 3, pages 301–308. Springer, 2019.

[40] Daniel Votipka, Rock Stevens, Elissa Redmiles,
Jeremy Hu, and Michelle Mazurek. Hackers vs.
testers: A comparison of software vulnerability
discovery processes. In 2018 IEEE Symposium on
Security and Privacy, pages 374–391, May 2018.

[41] R. F. Woolson. Wilcoxon Signed-Rank Test, pages
1–3. American Cancer Society, 2008.

[42] Michal Zalewski. American Fuzzy Lop.
http://lcamtuf.coredump.cx/afl/ [Ac-
cessed March 30, 2019].

18


